REPUBLIC OF KENYA

Ministry of Agriculture, Livestock, Fisheries and Irrigation State Department for Crops Development

Overview of soil fertility & available soil testing programs to develop fertilizer recommendations in Kenya

CN Kibunja, EW Gikonyo, SK Kimani, LW Mbuthia, AO Esilaba and D Kamau

KALRO and IPI

OUTLINE

- Introduction
- Major soil fertility constraints
- Crop responses to potassium fertilizer
- National Soil Testing Information
- Importance of Soil Testing in fertilizer recommendations
- Conclusions and recommendations

Introduction

- Productivity of many crop enterprises is below yield potential;
 Low crop yields, e.g. maize 1.5-2.5 t/ha and beans 0.3 0.5 t/ha;
 Declining yield trends with a notable yield gap between research & farmer-managed plots;
- Underlying problems include:
 - ►Low inherent soil fertility (low SOC, N, P, K, micro-nutrients eg. Cu and Zn);
 - ➢Poor land management nutrient loss through crop removal, erosion, leaching
 - depletion rates at 21 N, 8 P and 43 K kg/ha/year (Smaling et al. 1993);

≻Low fertilizer use (12 - 32 kg nutrient/ha/yr) and low financial ability

- Constraints experienced include:
 - Limited information on crop-specific nutrients requirements,
 - Lack of comprehensive information on site-specific characteristics of soils and,
 - $_{\odot}$ High level of variation in soil properties across the country.

Distribution of major soils in Kenya

- Kenya has 25 major soil types
 Top 10 dominant soil types (% coverage):
 1. Regosols (15.04)
 2. Cambisols (11.02)
- 3. Luvisols (8.13) 4. Solonetz (6.36)
- 5. Planosols (6.33)
- 6. Ferralsols (6.05)
- 7. Fluvisols (6.02)
- 8. Arenosols (5.49)
- 9. Calcisols (5.46)
- 10.Lixisols (5.15)

SOIL FERTILITY CONSTRAINTS

FURP project - 231 sites data

>80% soils exhibited low P
>High P fixation in most soils
> 100% of soils had pH <7.0
>63% of soils had pH <5.5
>82% of soils had organic carbon ≤ 2.0%

hence N deficiency (Gikonyo, 2002)

Extent of Acidic Soils and Nitrogen deficient soils

- Occupy about 13% total land
- 88% soils pH \leq 5.5

More than 80% soils have <0.2% Nitrogen</p>

SOIL ORGANIC MATTER

- Soil organic carbon easily lost under continuous cropping, e.g., a decline of 28 -54% in 25 yrs;
- However, manure and crop residue addition reduced depletion rate of SOC (Long-term experiment, Kabete)

Potassium in soils of Kenya

Historical perspective

1960-70's:

- none, low or negative responses to addition of K Fertilizers (MOA, 1969, 1970, 1975)
- No benefit from K fertilization (Hinga and Foum, 1972)
- Kenya fertilizer recommendations to date dominated by N and P

1980-90's:

- Soil analysis data showing K deficient zones in Kenya
- Research highlighting K declining status and crop responses (Nandwa, 1988; Mochoge, 1991; ICRAF 1995; Kanyanjua, 1999)

Crop responses to K fertilizer application on maize in western Kenya

Clear response to addition of K at 40 kg K2O/ha in Bungoma & Trans Nzoia to maize and 80 kg K2O in Rice in Mwea – not shown (KALRO-IPI, 2018, unpublished);

AVERAGE SOIL TEST RESULTS FOR 4 COUNTIES IN W. KENYA

Source: Soil Suitability Evaluation for Maize Production in Kenya (NAAIAP, 2014 - about 4500 farms)

SOIL PARAMETERS	<u>BUNGOMA</u>		% farms below adequacy level	/ <u>KAKAMEGA</u>		% farms below adequate level	<u>NAND</u> I		% farms below adequate level	<u>BOMET</u>		% farms below adequate level	Critical Levels
Soil depth (cm)	0-20	20-50		0-20	20-50		0-20	20-50		0-20	20-50		
Soil pH (1:1)	4.87	6.94	27	4.61	6.46	48	4.45	5.75	95	5.38	6.71	2	≥ 5.5
Org. Carbon (%)	0.29	1.89	100	0.91	2.03	100	1.29	4.16	75	0.91	3.58	82	≥ 2.7
Total Nitrogen (%)	0.05	0.18	100	0.08	0.19	100	0.13	0.41	22	0.10	0.36	67	≥ 0.2
Available P (ppm)	10	212	60	7	69	87	14	168	62	6	77	85	<mark>≥ 30.0</mark>
Potassium (me%)	0.08	0.57	57	0.08	0.89	77	0.18	1.15	7	0.24	1.59	0	<mark>≥ 0.24</mark>
Calcium (me%)	1	18.3	23	0.8	6.9	27	1.1	3.9	35	2	8.9	0	≥ 2.0
Magnesium (me%)	0.09	3.15	48	0.16	2.69	47	0.01	4.29	35	1	3.73	0	≥ 1.0
Manganese (me%)	0.01	0.44	8	0.2	0.82	0	0.07	1.39	5	0.12	1.05	0	≥ 0.11
Copper (ppm)	0.11	3.12	32	1.92	17	0	0.6	4.07	23	0.19	11.9	95	≥ 1.0
Iron (ppm)	16.5	225	0	10.5	89	0	22.9	151	0	27.9	200	0	≥ 10.0
Zinc (ppm)	0.53	4.52	100	0.31	28.3	82	0.37	8.79	93	1.96	38.8	73	≥ 5.0

Major deficiencies in the 4 Counties were N, SOC, P and Zn, followed by K and Mg; Micronutrients, Cu and Fe adequate except in Bomet and Kakamega, respectively.

Importance of Soil Testing in Fertilizer Recommendations

- Soil testing and plant analysis are tools used for determination of crop nutrient needs
- Soil testing evaluates the fertility of the soil to determine the basic amounts of fertilizer or lime to be applied
- Plant analysis is used to monitor whether the fertilization or liming program, according to the soil test, is providing the necessary nutrients for at the necessary levels for top yields
- Important in diagnosis of nutrient deficiency towards cropspecific fertilizer recommendations

Soil testing methods

- Soil testing methods require to be calibrated with field trials to give the Soil Nutrient Critical Levels (SNCLs)
- Dilemma: different soil labs use different testing methods which give different nutrient levels for the same soil (Figures: P & K analysis)
- Hence fertilizer recommendations vary from one laboratory to the other
- Soil/plant test results repeatability is an issue
- Need for harmonization or correlation with well-calibrated methodologies

FERTILIZER SUBSTITUTION AND SOIL TEST IMPLICATIONS

ISFM practice	Urea	DAP/TSP	KCI	NPK 17-17-17			
	Fertilizer reduction, % or kg/acre						
Previous crop was a green manure crop, e.g.	100%	70%	70%	70%			
<i>Lantana camara</i> for maize or <i>Azolla</i> for lowland rice							
Fresh vegetative material (e.g. prunings of tithonia,	4 kg	2 kg	2 kg	8 kg			
grevillea, banana leaves, coffee husks) per 1 ton of	тку	2 KY	ZKY				
fresh material							
Farmyard manure per 1 t of dry material	5 kg	3 kg	2 kg	10 kg			
Residual value of FYM applied for the previous crop,	2 kg	1 kg	1 kg	3 kg			
per 1 t	J	J					
Dairy or poultry manure, per 1 t dry material	9 kg	4 kg	5 kg	16 kg			
Residual value of dairy and poultry manure applied	2 kg	2 kg	1 kg	3 kg			
for the previous crop, per 1 t	-	-	-				
Compost, per 1 t	8 kg	3 kg	3 kg	15 kg			
Residual value of compost applied for the previous	3 kg	2 kg	1 kg	5 kg			
crop, per 1 t	J	J	J				
Rotation	0% reduction but more yield expected						
Cereal-bean intercropping	Increase DAP/TSP by 7 kg/ac, but no change in N & K compared						
	with sole cereal fertilizer						
Cereal-other legume (effective in N fixation)							
intercropping	in K compared with sole cereal fertilizer						
If Mehlich III P >15 ppm; Mehlich 1 – 30ppm	Apply no P						
Available P (Olsen) > 10 ppm	Apply no P						
If soil test K <100 ppm	Band apply 20 kg/acre KCl						

Conclusions and Way forward

- More soil testing to cover more farms and regions to create a robust Kenya Soil Information database;
- Available information still indicate that N,P, SOC are the major limiting nutrients;
- Recent soil testing and field trials have identified deficiencies for K, Mg and micronutrients Zn, Cu and Fe;
- Information gaps secondary nutrients, S and micro-nutrients, Bo and Mo;
- Crop responses critical for site and crop specific fertilizer recommendations
- Harmonize soil test reporting system across public-private labs;
- Liming manage soil acidity in areas with soil pH less than 5.2;
- Raise soil organic matter and conserve environment through integrated soil fertility management strategies;
- Incorporate locally available materials into fertilizer recommendations increase farmer profitability

