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Abstract

Metal-based nanoparticles such as Ag, ZnO, CuO, TiO2, and
others possess unique properties that lend them to a wide
array of uses. This means that during manufacture, use, or
upon disuse, these nanoparticles can become constituents of
the soil. Upon interaction with soil, nanoparticles affect soil
processes, and in turn are affected by soil properties. The soil
factors affecting nanoparticles can be classified into chemical
(e.g., pH, organic matter, and ionic strength) and biological
(e.g., plant root exudates, microbes, and microbial activities).
Some well-known fates of nanoparticles in soil include
aggregation of individual nanoparticles (homoaggregation)
or of nanoparticles with other soil constituents (hetero-
aggregation); dissolution to ionic species and, potentially,
sorption of the ions onto organic matter or precipitation with
chloride; acquisition of surface coating; change in surface
charge; and change in shape. These modifications alter
nanoparticles reactivity, which diminishes or enhances
their bioactivity in plant systems. Thus, the degree to which
nanoparticles influence plants depends to a large extent on
the complexity of soil property.
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Introduction
Due to their unique properties, metal-based nano-

particles (NPs) (e.g., Ag, ZnO, CuO, Fe2O3/Fe3O4,
TiO2, CeO2, SiO2) are increasingly incorporated into
various applications to enhance quality and functioning
[1]. Such extensive use of NPs implies they can become
constituents of the soil either by deliberate use (e.g.,
nanofertilizers and nanopesticides) or inadvertently as
contaminants [2,3]. In soil, NPs interact with
www.sciencedirect.com
rhizosphere processes influencing plants, which affects
plants in subtle or extreme ways. The exact degree and
nature of such effects are dependent on factors like soil

structure and chemistry, exposure dose and duration,
the biological species encountered, and the intrinsic
properties of the NP [2,4e6].

There is a lack of harmonization of experimental designs
in the bio-nano-science literature. NP sources and
properties, exposure matrices, durations, doses, toxico-
logical endpoints of interest, and biological species vary
widely, making results from these studies less relevant
to real environmental scenarios [7] Yet, a myriad of
studies have suggested that NPs are more phytotoxic

than their micro-scale or ionic counterparts [e.g., [8,9]].
However, this assumption has increasingly been
demonstrated to be an overstatement, given that the
preponderance of these studies have been conducted
using non-soil media; often involved high NP doses
designed to evoke toxic responses; are characterized by
short exposure durations that assess acute, rather than
acute-chronic, responses; and that lack the presence of
microbes that contribute in shaping NPeffects. Even, in
many cases, plant response to metal exposure is not size-
specific, as non-nano (ionic or micro-scale) materials

have been shown to evoke no more, or less, strong re-
sponses than nano-scale products in plants or soil mi-
crobes [2,10e13].

No doubt, the outcome of NP exposure in agricultural
soils is interactive; hence, although NPs in soil influence
plants, they are also influenced by the soil and plant.
However, the relationships between soil properties and
their influence on the biological impacts of NPs have yet
to be fully understood [4]. The transformation of NPs in
soil leads to different fates: aggregation, dissolution, or

stabilization. In turn, transformation remodels (esca-
lates or attenuates) the outcomes of plant exposure to
NPs [14e21]. Given the general lack of unified end-
points in the literature and the number of studies with
contradictory findings on the toxicity of NPs, it is hard to
not argue that NPs are not always phytotoxic [2,5].
Rather, soil or environmental properties, perhaps to a
greater degree than particle size, appear to direct the
eventual effects of NPs on plants. A lot has been
discussed on the effects of NPs on plant growth and
productivity [e.g., [2,5,22]] In comparison, reviews on
the effects of soil on NPs that influence plant responses

are relatively limited. This review, therefore, focuses on
the effects of soil on metallic NPs, to better understand
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2 Nanomaterials in plants
the influence of soil properties in transforming and
modulating the impacts of NPs on plants.
Soil properties influencing plant response
to nanoparticles exposure
pH
Soil pH is one of most critical properties regulating NP
behavior. Under acidic conditions NPs are transformed
into ionic species at high rates, while alkalinity promotes
aggregation of NPs [23e25]. Figure 1A shows the
dissolution of Ag NPs of 4 different sizes at 2 different
pHs, as a function of time. In contrast to dissolution,
Figure 1B shows the effect of pH on the particle size of

Ag NPs as a function of time, where particle size
decreased at pH 5, but increased at pH 9 (compare data
without addition of humic acid; HA). When NP disso-
lution is stimulated, the pool of reactive ions increases;
the NPs serve as reservoirs for continued release of ions.
However, upon dissolution, so-called NP-specific effects
are attenuated, as the dissolved ions are complexed by
soil chemicals, and assume similar fate as ionic species
originating from non-NP sources [26]. Likewise, when
NPs aggregate under alkaline pH, they lose their nano-
specific properties, and the rate of subsequent dissolu-

tion into ions reduces. Furthermore, the reactivity of
NPs depends strongly on their surface charge, which
itself is a function of pH. With titanium oxide (TiO2),
for instance, highly negatively-charged NPs typically
occurring at alkaline pHs are more stable (i.e., maintain
Figure 1

Effect of pH on the dissolution (A) and aggregation (B) of Ag nanoparticles. Ima

Current Opinion in Environmental Science & Health 2018, 6:1–8
their pristine nano size) than NPs at neutral pH. At
acidic pH, surface charge is highly positively-charged,
and particle size is smaller. Thus, with TiO NPs, as
likely with other metal oxide NPs, there is a pH window
(about 5.5e7.5) where aggregation is predominant [27].
This also suggest that NPs can return to a prior state
with a pH change, such as occurs during aggregation and
disaggregation of NPs. Nevertheless, aggregation

induced by pH reduces NP retention and transport in
the soil and, accordingly, results in the attenuation of
their effects upon biological systems. As indicated in
studies involving wheat and different NPs, soil pH af-
fects NPs differently [28,29]. Both CuO and ZnO NPs
were differently reactive in acidic (pH 4.5e5.4) vs.
alkaline (pH 7.8e8.8) soils, resulting in positive growth
responses in alkaline soil with both NPs, but negative
responses in acidic soil (Figure 2) [28,29]. Similarly,
CuO NPs were more toxic to barley at low pH, coinci-
dent with more Cu dissolution from the NPs [30]. In

summary, available data clearly demonstrate the pro-
found effect that soil pH has on NPs and the outcome of
their interaction with plants, and indicate the need for
soil-specific assessment of each NP, especially given the
large swathes of global agricultural lands with soils that
are distinctly acidic or alkaline.

Ionic strength
Ionic strength - the presence and amount of salts - af-
fects NP behavior and subsequent plant responses.
Most pristine NPs aggregate to a greater degree at high
ges courtesy Peretyazhko et al. [24], and Zhou et al. [25]; with permission.
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Figure 2

Effects of soil pH on the dissolution of CuO or ZnO nanoparticles, shoot uptake of dissolved Cu or Zn, and root response of wheat to CuO or ZnO
nanoparticles exposure. Data used for Figure adapted from Watson et al. [28], and Anderson et al. [29]; with permission. Bars with and without asterisks
are significantly different, separately for each NP and measured parameter.
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than at low ionic strength [31]. Figure 3 demonstrates
the effects of high ionic strength (50 mM CaCl2 on the
aggregation potential of ZnO NPs, which was less at low

(5 mM) CaCl2 concentration (see Ref. [32]). As
demonstrated using both microscopy and dynamic light
scattering, the particle sizes increased in the presence
Ca-salt [32]. While ZnO NPs (500 ppm) induced lateral
root proliferation in wheat, which is a stress adaptation
marker related to hormonal regulation, the presence of
the salt, even at a low concentration, reduced the for-
mation of lateral roots, although ZnO NP-induced in-
hibition in root elongation was not significantly reduced
by the salt. Notably, Ca-salt reduced shoot loading of Zn
in the plant. Similarly, KCl and NaCl at low ionic

strength (5 mM) each counteracted the inhibition of
root and shoot elongation, or lateral root proliferation,
caused by CuO or ZnO NPs, while decreasing Cu
uptake [32]. Mechanistically, Na, K or Ca at high levels
could reduce plant uptake of Cu or Zn ions dissolved
from NPs by competitively out-binding them at the root
surface. Salts could also alter the composition of wheat
root exudates, thus, regulating Cu or Zn chelation, sol-
ubility and bioavailability [33,34]. Related to this is the
finding of Larue et al. [4], in which soil having a high
cation exchange capacity (i.e., soil with high K, Ca, Na,

Mg) showed reduced leaching of TiO2 NPs, inhibited Ti
www.sciencedirect.com
uptake by wheat, and did not inhibit plant biomass
production. One additional point to stress is that salts
can influence NP transformation differently. For

instance, CaCl2 at 5 mM increased ZnO NP dissolution,
but decreased CuO NP dissolution [32]. Clearly, salt
type and concentrations have different implications in
the degree to which plants thrive and accumulate metals
from metal oxide NPs, and consequently on their pro-
ductivity and the food chain. This could be more sig-
nificant in calcareous soils with high Ca contents that
could affect different NPs differently.

Organic matter
Soil organic matter (OM) may include such compounds
as organic acids, chitosan, dextran, and starch, among
others. Although the influence of OM on NPs revolves
mainly around surface modification, the outcome on NP
behavior, and thus, on plants, can be complex and dy-
namic, dependent on the charge modification on NP
surface [35]. Certain organic compounds, when they
coat NP surface, cause them to aggregate, while others
induce disaggregation. As shown in Figure 1B above,
dependent on pH, humic acid (HA) modified the

aggregate size of Ag NPs, whereby particle size
increased with increasing HA concentration under
acidic condition, whereas aggregate size reduced or was
Current Opinion in Environmental Science & Health 2018, 6:1–8
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Figure 3

Atomic force microscopy (upper panel) and dynamic light scattering (lower panel) of zinc oxide nanoparticles without and with calcium chloride at 50 mM.
The as-manufactured nominal size of the nanoparticles is 50 nm. However, aggregation (to 423 nm) of the particles is observed in water (left panel) which
significantly increases in the presence of the salt to 978 nm (right panel). Middle insert shows the effect of ZnO NPs, without and with CaCl2, on plant root
elongation. Figure is partially modified from reference 32, with permission.
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unaffected by HA under alkaline condition. Similarly,
coating with HA also caused disaggregation of Ag NPs at
alkaline pH, stabilizing them [36]. Starch has been

demonstrated to stabilize zero-valent Fe NPs, presum-
ably by acting as a dispersant that keeps the particles
apart [37]. Collectively, OM-induced reduction or
maintenance of pristine particle size likely results from
their ability to lessen particleeparticle interaction that
cause homoaggregation, or particle interaction with soil
factors that cause heteroaggregation. Sulfur and
nitrogen-rich HA and fulvic acid are thought to be highly
effective in stabilizing Ag NPs, due to their richness in
metal affinity sites [38]. In contrast to HA, oxalic acid
resulted in aggregation of TiO2 NPs, increasing aggre-

gate particle size from around 100 nm to about 1000 nm
[39]. However, stabilization of NPs due to coating by
HA could result in the reduction of the particle surface
available for oxidative dissolution into ions. Thus, for
NPs whose bioactivity is dependent on dissolution, this
would lower their effects upon biological systems, which
could explain the attenuation by HA of the toxicity of Ag
NPs to the plant-associated soil microbe, Pseudomonas
fluorescens [40]. Alternatively, HA could cause Ag ions
dissolving from Ag NPs to precipitate, especially in the
presence of chloride ions, or themselves rebind onto the

Ag NPs, lowering free Ag ion concentration [41,42].
Ultimately, the long-term effect of HA on Ag NPs is
Current Opinion in Environmental Science & Health 2018, 6:1–8
dependent on soil HA concentration, as HA plays a role
in the mobility of the NP, as well as in the reconversion
of Ag oxidative products to elemental Ag [43]. Moreno

et al.’s review [35] catalogued the effects of NP coating
by different organic compounds on crop growth
response. Coating with citric acid generally resulted in
positive responses with Fe3O4 NPs; no, or negative, re-
sponses with CeO2 NPs; and negative responses with Ag
and Au NPs. Similarly, chitosan coating of CuO NPs
yielded positive responses, while coating of CeO2 with
alginic acid increased Ce uptake, with potentially
negative implications in terms of Ce trophic transfer. A
more recent study [4] reported a clay soil rich in OM to
reduce mobile Ti concentration from TiO2 NPs in the

leachate. Furthermore, the Ti interacting with plant root
remained mostly in anatase form, suggesting stabiliza-
tion by OM, resulting in reduced Ti accumulation and
lack of toxicity in the clay soil.

Phosphate
Under the intensive P fertilization common in advanced
cropping systems, the presence of applied P at elevated
levels can significantly influence the fate of NPs.
Phosphate forms complexes with Fe, Zn and Cu to
reduce their bioavailability. Specifically for Zn, upon
dissolution from ZnONPs, Zn ions may precipitate with
PO4, resulting in the formation of insoluble Zn-PO4
www.sciencedirect.com
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Figure 4

Schematic representation of key nanoparticle-soil-plant processes governing nanoparticle fate in soil and effects on plants. Upon exposure in soil, NPs
undergo one or more of three major fates, namely: (i) Aggregation that causes them to lose their intrinsic nano-scale properties, resulting in a variety of
outcomes indicated in the blue box. However, aggregated NPs may also disaggregate, subject to changes in soil properties. Under aggregation, the
uptake of the cognate element by plant is reduced and toxicity is subdued. (ii) Dissolution is influenced by soil pH, leading to formation of highly reactive
ionic species. Uptake of the ions is stimulated and complex formation with a variety of organic and inorganic molecules occurs both in soil and in planta,
creating new species of chemical compounds. Toxicity is enhanced as a result of increased uptake of reactive ions. (iii) Stabilization of NPs in soil as they
encounter natural organic matter (NOM) derived from chemical or biological (plant or microbial exudates) sources. Dependent on surface charge, NOM
coating of NPs occurs, which both reduces surface oxidation that permits dissolution and increases the electric double layer that pulls particles apart,
lowering the potential for particle–particle aggregation. NOM-coated NPs are stabilized and functionalized, with subsequent plant responses dependent
mainly on the surface chemistry and compatibility or otherwise with the plant cell surface.
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aggregates. The rate and amount of Zn-PO4 formation is
highly dependent on PO4 concentration and exposure
time, and inversely correlate with ionic dissolution of

the NPs [44]. Ultimately, such complex formation
potentially reduces P leaching, and potentially also ZnO
NP dissolution and plant uptake of both P and Zn
[12,13,44,45]. Notably, the speciation of the Zn detec-
ted in plant tissues exposed to ZnO NPs has been
mainly Zn-PO4 [15,16]. On a much broader scale,
reduced uptake of Zn from ZnO NPs in the presence of
added phosphate, combined with rhizosphere or in-
planta transformation of ZnO NPs into insoluble and
less mobile Zn-PO4, could have two contrasting envi-
ronmental health ramifications (i) reduced shoot Zn

content which may affect human Zn nutrition with
chronic consumption of affected plants; and (ii) less
phosphate run-off, and consequently, less eutrophica-
tion of water bodies.

Soil biology
Soil biology also influences NP fate and effect in plants.
Roots of terrestrial plants co-exist with soil microbes,
and plant ecological success in the presence of NPs can
be strongly dictated by the nature of plantemicrobe
interaction [17,18,46]. While much has been reported
on the effects of different NPs on plant-associated soil
microbes [e.g., [47e53]], the influence of soil microbes
www.sciencedirect.com
on NP-plant interactions is less accounted for. Accord-
ingly, the routine inclusion of microbial components in
NP-plant studies has been advocated for [54]. Bacteria,

fungi, and bacterial exudates alike influence NP fate.
For instance, the inoculation of bean plant with a root-
colonizing bacterium, Pseudomonas chlororaphis O6
(PcO6) reduced Zn uptake under ZnO NP exposure.
This appears to have come, however, with the cost of
reducing the bacterial cell density, albeit slightly [55].
In other studies, PcO6 altered the expression of stress-
responsive genes induced by CuO NPs in wheat
[19,20]. It is likely that the stimulation of bacterial
extracellular polysaccharides (EPS) in PcO6 by CuO
NPs [56], as by Ag NPs in Escherichia coli [57], permitted

both coating of NP surface and trapping of ions
dissolving from the NPs by EPS, thereby limiting wheat
exposure to NPs, and reducing Cu uptake and growth
inhibition resulting from CuO NP exposure. Also,
inoculation of maize plant with arbuscular mycorrhizal
(AM) fungi exposed to ZnO NPs increased essential
nutrient accumulation and growth, while reducing Zn
uptake at toxic concentrations. Notably, in the absence
of AM, the ZnO NPs were phytotoxic [58]. These few
examples aptly demonstrate the need for acknowledging
the presence of soil microbes in the plant rhizosphere

and their inclusion in assessments of NP-plant
interactions.
Current Opinion in Environmental Science & Health 2018, 6:1–8
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Conclusion
A cocktail of soil interactions can remodel metallic NP

fate and effects in soil-plant systems, and regardless of
whether the soil factor influencing NPs is chemical or
biological, metallic NPs undergo fates that are often too
difficult to disentangle due to the complex nature of soil.
The processes and outcomes of theseNP-soil interactions
can be captured in the schematic presented in Figure 4.
Given the increasing use of NPs in our daily lives and the
observed and predicted effects they portend, disen-
tangling the cocktail of soil interactions with NPs that
remodel their fate and effects requires holistic study
designs involving assessing the roles of all key players

(namely NPs, microbes, and plants) under natural rhizo-
sphere systems using soils of varying chemical properties.
Moreover, there should be a better harmonization of
exposure conditions includingmedia type, dose, duration,
and endpoints. That way, the most relevant information
regarding themechanisms and extents ofNPinfluence on
plants can be obtained for devising risk mitigation mea-
sures, and for using NPs manufactured from metallic
mineral nutrients for crop fertilization.
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