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SUMMARY 

Maize is the main cereal crop in Ghana. However, yields are very low (around 1-1.5 mt/ha), and 

despite the increase in fertilizer application per hectare (21-22 kg/ha), there are large differences 

in yields in on-farm and on-station trials.  

Maize production is hampered by several biotic and abiotic factors that negatively impact its yield 

response to fertilizer application. Therefore, we sought to understand why, despite fertilizer 

application, maize yields do not increase consistently over space and time and what major factors 

explain this variability. 

To answer this question, we chose a yield-modeling approach based on yield data from on-farm 

and on-station trials. Quantitative Evaluation of Fertility of Tropical Soils (QUEFTS) and Multiple 

Linear Regression-Akaike Information Criterion (MLR-AIC) models were used to evaluate 

observed yield variability, while random forest for spatial predictions framework modeling was 

used for geospatial analysis and mapping of yield predicted. 

The QUEFTS model cannot significantly explain yield variability at the station and farm level 

(R²=12% and R²=24.6%, respectively). MLR showed that soil physical properties explained more 

of the yield variability (R²=24%) at the station level than environmental parameters (R²=8%), with 

chemical soil properties explaining the highest fraction (R²=41%). At the farm level, 

environmental covariates (R²=26%) explained more variability in yield response than physical 

(R²=21%) and soil chemical (R²=16%) variables. Detailed regression analysis revealed that high 

temperature and high rainfall combined with shallow rooting depth (<50 cm) were determinants 

that reduced the effectiveness of fertilizer application. 

Understanding the yield variability observed in Ghana for better fertilizer recommendations must 

be done comprehensively because yield variability is the result of the interaction and combination 

of several covariates. Other covariates, such as management, pest and diseases, and solar radiation, 

must be considered in further modeling analysis. 
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 INTRODUCTION 

1.1 Background 

The increase in population growth and consumption means that the global demand for food will 

continue to increase for at least 50 years (Cicin-Sain, 2018; EU, 2019), and the effects of climate 

change are not helping matters. Population growth and shifting diet imply that 60-70% more food 

must be produced by 2050. Agricultural production in sub-Saharan Africa (SSA) must double or 

even triple to meet that estimated food demand (Godfray et al., 2010; Rahman et al., 2021). 

Scientists have begun to speak about soil fertility as a natural resource at risk of depletion. 

According to Sanchez et al. (1997), an average of 660 kg N/ha, 75 kg P/ha, and 450 kg K/ha have 

been used by crops and not replaced during the last 30 years from about 200 million (M) ha of 

cultivated land in 37 African countries, including Ghana. Bationo et al. (2018) reported that soil 

nutrient depletion rates are projected as 35 kg N, 4 kg P, and 20 kg K per hectare, and the extent 

of nutrient depletion is widespread in all of Ghana’s agroecological zones (AEZs), with N and P 

being the most deficient nutrients (Zingore et al., 2015). As a result, the yields obtained by farmers 

are far below the attainable yield, crop production is limited, and food security is in jeopardy. 

It is increasingly understood that crop response to fertilizer in many areas of Africa, including 

Ghana, is depressed by a variety of factors, including soil degradation problems and many others. 

Furthermore, variability in climatic conditions (rainfall and temperature) is considered another one 

of the major challenges to agricultural production other than soil fertility issues (Kyei-Mensah et 

al., 2019). For instance, rainfall variability has been reported to affect production crops, increase 

crop disease incidents, and cause drastic reductions in soil fertility (Thornton et al., 2009; 

Kashaigili et al., 2014; Leng and Huang, 2017). High variability of climatic parameters (rainfall, 

temperature) causes uncertainties in agricultural productivity, with profound impacts on the 

ecology, economy, and people’s welfare (Onduru and Du Preez, 2007). According to Tetteh et al. 

(2014), the impacts of climate change in Ghana are expected to worsen soon, especially if nothing 

is done to mitigate its effects. 

Low yield is partly caused by soil variability and varying topographic features of the field (Jiang 

and Thelen, 2004; Kravchenko and Robertson, 2007). Field topography can have a direct influence 

on crop growth and yield by redirecting and changing soil water availability and an indirect effect 

through its influence on the distribution of certain soil chemical and physical properties, such as 

organic matter content, base saturation, soil temperature, and particle size distribution (Stone et 

al., 1985; Kravchenko and Robertson, 2007). In addition to the growth-defining factors, yield is 

also influenced by root zone depth (Sadras and Calvino, 2001; Guilpart et al., 2017; Leenaars et 

al., 2018a). According to Tetteh et al. (2016), soils in Ghana are suitable for cereal crop production 

but most sites are marginal, with shallow soil depth as the major limitation. For instance, 52% of 

soils in the three northern regions of Ghana have a soil depth <50 cm. In addition, a study on 

quantification of grain yield response to soil depth in soybean, maize, sunflower, and wheat 

revealed that the harvest index was most affected by shallow soil in the maize plot (Sadras and 

Calvino, 2001). 

Despite current low crop productivity, Ghana has a large potential to intensify production and 

significantly close current yield gaps of major cereals (Bationo et al., 2018; van Loon et al., 2019), 

since it was estimated that, on average, 20% of maize yield potential is achieved across Ghana 

(GYGA, 2021). For example, only addressing nutrient deficiencies by applying fertilizer would 

help to reduce yield gaps to 50% of attainable yields (Mueller et al., 2012).  
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1.2 Problem Statement 

Despite calls to ramp up efforts to design and implement fertilizer programs that recognize the 

spatial variability of soil fertility and climatic conditions, Ghana’s current fertilizer 

recommendations tend to be very general, assuming uniform soil fertility and geographic 

conditions throughout the country (Chapoto and Tetteh, 2014). According to Abunyewa and 

Mercer-Quarshie (2004) and Bationo et al. (2018), maize grain yield rarely exceeds 1 mt/ha in 

farmers’ fields. Despite N, P, and K compound fertilizer applied, they observed low yield in maize 

farms. The increase in fertilizer use, however, has not lead to substantial increases in crop 

productivity. Subsequently, Bua et al. (2020) did a study on 1,684 yields and fertilizer data points 

from legacy and peer-reviewed publications. Yield responses of maize to fertilizer (organic, 

inorganic) application in Ghana were explored, and findings showed that grain yield responses to 

fertilization are highly variable across AEZs. Some locations showed a significant grain yield 

response (8 mt/ha) to fertilizers, while other areas had a small grain yield response (0.5 mt/ha). 

This variability in maize response to different fertilizer rate applications depresses farmers’ 

incentives and ability to purchase fertilizers in subsequent seasons (Njoroge, 2019). Hence, the 

question arises of why the response of maize yield fluctuates so greatly even though the rate of 

NPK applied per hectare in Ghana has grown rapidly, from 8 kg/ha in 2016 to 21 kg/ha in 2020 

(MoFA, 2020; AfricaFertilizer.org, 2021)? 

It is acknowledged that solutions to such challenges lie in sustainable agricultural production 

systems (Onduru and Du Preez, 2007) via improved nutrient use efficiency (NUE) with integrated 

soil fertility management (Sanginga and Woomer, 2009; Vanlauwe et al., 2015; Mugwe et al., 

2019), crop management, and other inputs. However, to produce sustainably, it is crucial to assess 

factors that affect maize production and their impact on yield response to native soil fertility and 

applied fertilizers. Several of these soil factors are beyond farmers’ control. In addition, the 

climatic variability of rainfall, evaporation, solar radiation, temperature, relative humidity, and 

wind is also beyond farmers’ command. Each of these parameters has a spatial and temporal impact 

that influences maize yield response. 

An essential way to capture spatio-temporal variability to identify site-specific factors that 

determine yield and the assessment of crop requirements to reduce the yield gap can be done by 

model-based approaches (Silva and Giller, 2021). Crop production models can be characterized as 

empirical and mechanistic (process-oriented) models (Sattaria et al., 2014). Decision support 

approaches, such as the Quantitative Evaluation of Fertility of Tropical Soils (QUEFTS) model, 

have been advocated by several studies to estimate field-specific N, P, and K recommendations 

(Tabi et al., 2007; Tittonell et al., 2008a; Wijayanto and Prastyanto, 2012; Xu et al., 2013; Ren et 

al., 2015). QUEFTS could be used to explain yield variability concerning soil chemical properties 

(pH, organic carbon, available and total phosphorus, and organic nitrogen) (Onduru and Du Preez, 

2007; Njoroge, 2019). QUEFTS assumes all other production factors are optimal and does not 

consider soil physical properties, climatic variables, or crop-specific characteristics. A single 

modeling approach, such as QUEFTS, cannot be expected to disentangle the highly variable and 

complex smallholder farming systems, which calls for caution in drawing oversimplified 

conclusions. According to Dutta et al. (2020) and Timsina et al. (2021), for investigating multiple 

interactions among the outcomes, the explanatory variables often demand adaptive and non-

parametric multivariate analyses only, due to their ability to negotiate non-linear relationships. 

Thus, here, multiple linear regression (MLR) and machine learning (ML) have been added to 

further analyze yield variability. In this study, maize yield response variability will be assessed 

using data from on-farm and on-station trials through these approaches. 
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1.3 Activity Statement  

The study of variability in yield response of maize to fertilizer began by pre-processing and 

diagnosing yield data from articles and covariates to obtain ordered and scientifically sound data. 

Then, the ordered yield data and covariates were used to estimate yield using different analytical 

approaches, including QUEFTS, MLR, and ML). The observed and predicted yields were 

confronted using Ordinary Least Squares Regression (OLSR) to analyze the error between average 

model prediction and ground-truth to determine how much models help us to explain maize yield 

response variance in Ghana. Finally, the observed and predicted yields were used to digitize the 

maps using advanced geostatic techniques. 

1.4 Hypotheses  

• H0-The QUEFTS model can significantly explain the yield response of maize to fertilizer. 

• H0-MLR statistics can identify factors that significantly affect the yield response of maize to 

fertilization. 

• H0-Digital yield prediction maps (DYPMs) can be used to arrive at site-specific fertilizer 

recommendations. 

1.5 Forecasting Statement 

The objective of this study is to understand and explain the spatial variability of maize yield 

response components using the selected approach. Specifically, it will:  

• Assess maize yield response to chemical soil properties and NPK fertilizer. 

• Assess maize yield response to physical soil properties, landscape elements, and climatic 

variables. 

• Produce yield maps to arrive at site-specific fertilizer recommendations. 

1.6 Justification Statement 

Mineral (NPK) and organic fertilizers have played and will continue to play a crucial role in 

increasing maize yield in Ghana. However, the application of organic or mineral fertilizers or both 

in combination in farmers’ plots and the associated low yield responses and high variability in time 

and place deserve in-depth analyses. To be useful, fertilizer must be applied in a site-specific 

manner and must be aligned with edaphic and climatic conditions. To do this, it is imperative to 

capture, understand, and explain the spatial, temporal, and distributional variation in yield 

responses of maize to fertilizer. This assessment will help in making farm decisions and fertilizer 

recommendations that are appropriate and specific to the crop site in the agroclimatic zone.  
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 LITERATURE REVIEW 

2.1 Agriculture in Ghana 

Agriculture plays a notable role in the economies of most developing countries in SSA 

(FAO/OECD, 2018). In Ghana, it has been the principal sector for the development and growth of 

the economy for several decades (Diao et al., 2019). About 40% of Ghana’s labor force is engaged 

in agriculture, which contributes 14.3% to the country’s gross domestic product (GDP) (Addo and 

Amponsah, 2018; FAO, 2019), even though this contribution to real GDP growth has been 

declining for the past five years (World Bank, 2018). According to Shereen et al. (2019) and Ghana 

Statistical Services (GSS, 2019), cocoa export alone generates about U.S. $2.71 billion in foreign 

exchange. It makes up about 20-25% of total export receipts, provides about two-thirds of cocoa 

farmers’ incomes, supports the livelihoods of approximately 4 million farming households, and 

reduces poverty, especially in southern Ghana, due to the overall agricultural growth (Darfour and 

Rosentrater, 2016a). 

Agriculture in Ghana is predominantly on a smallholder basis (less than 2 ha) using rudimentary 

technology to produce about 80% of the country’s total agricultural output. Agriculture occupies 

56% of the country’s total land area of 23,884,245 ha (SRID/MoFA, 2011). About 45.4% of the 

households in Ghana are agricultural households, 73.3% are rural households, and 26.7% are urban 

and large plantations with rubber, oil palm, coconut, and, to a lesser extent, rice, maize, and 

pineapples (Mohammed et al., 2013; Darfour and Rosentrater, 2016a; Bua et al., 2020).  

Generally, 51% of Ghana’s cereal needs are locally produced and less than 30% of agro-based 

industry raw materials are locally produced (Darfour and Rosentrater, 2016a); Ghana’s major 

export crops are cocoa, oil palm, and cotton. Several challenges undermine Ghana’s agriculture 

sector, according to Banson et al. (2014) and Darfour and Rosentrater (2016a). Diversity in 

agroecologies, a lack of human resources and managerial skills, policy constraints, poor 

management of natural resources, and inadequate technological development are all challenges 

that the Ghanaian authorities must address for sustainable agricultural development and food 

security. 

Ghana’s agriculture sector is characterized by low yields for both staple and cash crops (World 

Bank, 2017). The average cocoa yield in Ghana, estimated at 400-450 kg/ha (Figure 2-1A), is 

among the lowest in the world. In the Forest zone, cocoa, oil palm, coffee, and rubber are of 

particular importance. The food crops in this zone are mainly inter-cropped mixtures of maize, 

plantain, cocoyam, and cassava. Rice is important throughout the country, but cassava and cocoa 

cover the largest cultivated area (Figure 2-1B). 
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Ghana’s agriculture has recorded a generally increasing growth; the agricultural GDP increased 

from 2.3% in 2015 to 4.8% in 2018 (MoFA, 2020). Food price inflation decreased from 9.7 in 

2016 to 7.2 in 2019, with a positive impact on overall inflation. The global food security index, 

which considers affordability, availability, and quality of food across 113 countries, placed Ghana 

in the 59th position in 2019, up from the 79th position in 2018. 

Maize importation has decreased in these three last years, from 982,044 M mt in 2016, down to 

830,127 M mt in 2018 (MoFA, 2020). The decreasing imports demonstrate the ambition of the 

Government of Ghana to become self-sufficient in production of maize and other cereals, including 

rice, sorghum, millet, and soybean. Overall, Ghana depends on the import of wheat, rice, and maize 

by 100%, 61%, and 3%, respectively. 

In Ghana, 50% of the population depends on rainfed crops (SRID/MoFA, 2017). According to 

Nkrumah et al. (2014), the northern part of the region receives 150-250 mm of rainfall per month 

in the peak months of the wet season (July to September) and the southern part has two wet 

seasons: the major season from March to July and a minor season from September to November. 

The majority of West African rainfall comes from the West African Monsoon, which is controlled 

by the movement of the Intertropical Convergence Zone, an area where the southeast and northeast 

trade winds meet and a belt of convective clouds is formed due to this convergence and the high 

amount of energy from the sun. The movement of the Intertropical Convergence Zone results in 

high variability in rainfall (Israelsson et al., 2020). Mitigation strategies are challenging to 

implement in Ghana due to this complex spatial climate variability with the coexistence of 

different rainfall regimes, from a bimodal wet coastal forest to a dry savanna region in the north 

(Nkrumah et al., 2014). The variability negatively affects agricultural production, which threatens 

the existence of its smallholders. 
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2.2 Generality on the Maize Crop in Ghana 

2.2.1 Ecology of Maize 

Maize, Zea mays ssp. mays (2n = 20), is a monoecious plant cultivated as an annual plant but 

behaves under certain conditions like a biennial plant. It reproduces by fertilization cross 

(allogamous), unlike most other cereals. Carbon fixation in maize is affected by the C4 

photosynthetic pathway. Maize differs from other cereals in that it forms its grains not in terminal 

ears or panicles but axillary cobs. Mature cobs can be harvested 3-5 months after sowing. The 

main maize-producing areas in Ghana are Eastern, Ashanti, and Brong-Ahafo regions, which 

account for over 80% of the country’s total maize production (Darfour and Rosentrater, 2016b). 

The three northern regions (Northern, Upper East, and Upper West) supply the rest. Maize is 

produced in annual single-crop systems in the higher rainfall area in the Southern Forest zone and 

annual double-crop systems in the Forest-Savannah Transitional zone (GYGA, 2021). Typical 

double-crop systems in this zone include maize-maize, maize-cowpea, and groundnut-maize 

(GYGA, 2021). In the three northern regions, sorghum and millet are often intercropped with 

cowpea and/or maize, and in the Southern Forest zone, maize is often intercropped with one or 

more other crops such as cassava, cocoyam, and plantain. Maize adapts well to different soil types 

with a pH range of 5.0-7.0. High yields are obtained from maize planted on deep, fine-structured, 

well-aerated, well-drained loamy soils that are rich in organic matter. 

2.2.2 Maize Production in Ghana 

Zea mays L. ranks first as Ghana’s most important cereal produced and consumed (MiDA, 2010; 

MoFA, 2012, 2020; FAOStat, 2021), occupying an area of about 1.5 M ha and constituting about 

50-60% of Ghana’s cereal production; it contributes 3.3% to total agricultural production value. 

Post-harvest losses between 5% and 70% have been reported, according to Darfour and 

Rosentrater (2016b). Maize farming systems differ across AEZs with their unique characteristics 

in terms of the available technology sets, environmental effects, and management practices. 

The bimodal rainfall pattern in the Tropical Rainforest, Semi-Deciduous Forest, and Forest-

Savannah Transitional zones results in major and minor cropping seasons. The Guinea Savannah 

and the Sudan Savannah zones are characterized by a single growing/raining season from July to 

September (Asante et al., 2019). Consequently, major maize-producing zones are the Semi-

Deciduous Forest, Forest-Savannah Transitional, and part of the Guinea Savannah. 

2.3 Nutrient Use in Maize Cropping 

The fertilizer recommendation for maize was updated in 1974, and since then, only sporadic and 

inconclusive attempts have been made to update the recommendation (Tetteh et al., 2017). The 

fertilizer recommendation for maize was 64-38-38 kg/ha N-P2O5-K2O according to Adu et al. 

(2014). Safo (1990) reports that 67-45-45 kg/ha of N-P2O5-K2O was the Ministry of Food and 

Agriculture (MoFA)-recommended rate. These fertilizer recommendations were updated to 

90-60-60 kg/ha N-P2O5-K2O (Tetteh et al., 2008). The main subsidized fertilizers used in maize 

production are NPK (15:15:15) and urea (46:0:0). Average fertilizer use in 2020 was about 

20 kg/ha (MoFA, 2020), which is slightly higher than the SSA average of about 10 kg/ha, and in 

Ghana, less than half of maize farmers apply fertilizer, although in the north, high adoption by up 

to 87% of farmers is reported (Chapoto and Ragasa, 2013). 

2.4 Model Use in Maize Cropping 

Maize production is at the center of a perfect storm that encompasses the grand challenges of 

ensuring cereal food security in Ghana in the face of climate change, soil degradation, and water 
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scarcity while preventing further conversion of forests to agricultural land. The role of crop models 

and crop modeling in addressing these grand challenges is very important (Bindraban et al., 1999; 

Bindraban et al., 2000; Silva and Giller, 2021). To further support this claim, at iCropM2020 

Hammer (2020)1 and Giller (2020)2  stated that “If you don't understand it, you can't model it; if 

you don’t model it, you can’t understand it” and “We learn the most when the models don’t work” 

to emphasize the role of crop models in generating and testing research hypotheses and finding 

solutions to the challenges faced by farmers. Several crop models have been published. Initiated 

by modeling at Wageningen University by late Professor Cornelis Teunis de Wit (de Wit and 

Goudriaan, 1974) in the late 1960s with several models emerging, including BACROS and 

WOFOST (Van Diepen et al., 1989), many other institutions helped pursue these production 

concepts to further develop models, including the CERES-Maize model of the Decision Support 

System for Agrotechnology Transfer (DSSAT) suite (Jones, 1993; Jones et al., 1998), Agricultural 

Productions Systems simulator, or APSIM (McCown et al., 1996; Keating et al., 2003), 

AquaCROP (Hsiao et al., 2009; Raes et al., 2009; Steduto et al., 2009), and CropSyst (Stockle et 

al., 1994), among others. Of these, the DSSAT suite and APSIM are the most widely used in Ghana 

to estimate crop yields under varied soil, weather, and management conditions (Masika, 2016). 

The use of a crop model for yield estimation starts with calibration, followed by validation and 

finally application. For example, crop models have been used to assess the maize yield gap 

(Masika, 2016), maize variability and yield gap in Ghana AEZs (MacCarthy et al., 2017), and corn 

production and the role of fertilizer (Scheiterle and Birner, 2018). Crop models have also been 

found to be indispensable in evaluating and selecting the most promising options for fertilizer 

recommendations (Atakora et al., 2014; Antwi et al., 2017) for the best maize nutrition, thus 

reducing the yield gap. All of this research done with crop models does not concretely explain the 

yield response to fertilizer variability at the Ghanaian scale. And even when it has been done, it is 

only for a few regions and rarely mapped after the variability is explained. Thus, further analysis, 

taking into account a wide range of explanatory variables, is needed to explain and map the 

variability in observed maize yield responses to fertilizer across Ghana. 

The tradition of using the models in Ghana is thus becoming more established. However, the 

QUEFTS model, originally designed and calibrated for maize in tropical regions, is used less 

because it is not widely cited in Ghana’s agricultural literature. Articles on QUEFTS are mainly 

focused on its use for fertilizer recommendations, not as a model for assessing maize yield 

variability. The relationship between nutrient (NPK) uptake and yield, and the balance between 

these nutrients, is the basis of the QUEFTS model (Janssen and Guiking, 1990). The majority of 

studies in SSA in which QUEFTS was used show a fairly  high coefficient of determination 

(71%<R²<92% [Antwi et al., 2017], 77%<R²<87% [Ezui et al., 2017], 84%<R²<82% [Jamada, 

2019; Sattaria et al., 2014], 69%<R²<75% [Shehu et al., 2019], 66%<R²<78% [Smaling and 

Janssen, 1993], 83%<R²<84% [Tabi et al., 2007; Tittonell et al., 2008b; Wijayanto and Prastyanto, 

2012]) between predicted and observed yields. 

Various studies around the world have shown that application of machine learning techniques, 

such as linear mixed-effects, classification and regression trees, and random forest (RF), can be 

useful in determining and prioritizing the relative importance of factors that contribute to yields 

and yield variability (Jeong et al., 2016; Lamos-Díaz et al., 2020; Nevavuori et al., 2020; Paudel 

et al., 2021; Timsina et al., 2021). However, according to Hengl et al. (2018), the modeling 

 
1 Hammer, G. 2020. “On the Nature of Crop Models (and Modelers) Needed to Advance Crop Adaptation and 

Improvement,” Keynote to the Second International Crop Modelling Symposium, Montpellier, France. 
2 Giller, K.E. 2020. “Grand Challenges for the 21st Century: What Crop Models Can and Can’t (Yet) Do,” Keynote 

to the Second International Crop Modelling Symposium, Montpellier, France. 
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relationship between observed yield, as in our case study, with covariates and spatial 

autocorrelation jointly using machine learning techniques is relatively novel and not entirely 

worked out. In Ghana, few studies have used complex tools such as the above to quantify, assess, 

and explain persistent variability in grain crops, particularly the response of maize crop yield to 

fertilizer. Approaches such as machine learning model algorithms, however, require large datasets 

that may not be readily available, disallowing their use. 
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 DATA AND METHODOLOGY 

3.1 Study Area  

The study area covered almost the entire country of Ghana, which is located on the west coast of 

Africa. Ghana shares boundaries with Burkina Faso, Gulf of Guinea, Togo, and Côte d’Ivoire to 

the North, South, East, and West, respectively. The country covers a total land area of 238,539 km² 

and lies between longitude 2.0° E and 17.0 E° and latitude 1.0° N and 18.0° N (Figure 3-1). 

Administratively, the country is divided into 16 regions, and these regions comprise six 

agroecological zones (AEZs): Sudan Savannah (SS), Guinea Savannah (GS), Forest-Savannah 

Transitional (FST), Semi-Deciduous Forest (SDF), Rainforest (moist and wet evergreen), and 

Coastal Savannah (CS). Experiments were implemented in all AEZs where legacy data of maize 

yield were gathered. 

3.2 Data Sources 

Maize yields were compiled from peer-reviewed publications and various field and station trials 

between 1990 and 2017. The yield data concerned 1,818 sites from maize production under farmer 

trials and research trials assessing maize nitrogen grain yield responses, maize 

nitrogen * phosphorus grain yield responses, NPK grain yield responses, fertilizer grain yield 

responses in Ghana, response of maize to fertilizer applications in Ghana, fertilizer yield 

Figure 3-1. Map of Ghana showing AEZs and geographical distribution of 

experimental sites 

Source: Author. 
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responses in Ghana, and fertilizer trials in Ghana; for a more elaborate explanation of the trials, 

refer to Bua et al. (2020). Six hundred and twenty sites (farmer trials and research trials) with 

missing geographical coordinates and their trial years, unquantified NPK fertilizer amounts, and 

micronutrient fertilizer treatments (sulfur, zinc, boron, magnesium) were deleted. After cleaning 

the data, a total of 1,198 trial sites with their respective maize yields could be used for the analysis. 

3.2.1 Covariates 

In statistics, a covariate is a variable that is possibly predictive of the outcome under study. The 

direct effect of fertilizer on maize yields can be analyzed straightforwardly, but a significant part 

of the unexplained variation may be related to a secondary variable indirectly influencing yield 

response. In addition to fertilizer application, crop yields are also influenced by local climate, land 

characteristics, levels of inputs other than fertilizers, pests and diseases, and other management 

practices applied to the field. 

3.2.2 Soil and Climate Data Collection  

Soil properties are from ISRIC Africa SoilGrids (a collection of gridded soil property maps) at a 

resolution of 1 km² (Hengl et al., 2015; Hengl et al., 2017; Leenaars et al., 2018a). Rainfall and 

temperature datasets are from spatially interpolated monthly climate data for global land areas at 

a very high spatial resolution (approximately 1 km²) (Harris et al., 2014) and downscaled with 

WorldClim 2.1 (Fick and Hijmans, 2017). Temperature data were calculated using covariates 

including mean MODIS cloud cover (Cld), distance to oceanic coast (cdist), elevation (Elev), 

MODIS daytime land surface temperature (Tmax), nighttime land surface temperature (Tmin), and 

average nighttime and daytime land surface temperatures (Tmean) (Fick and Hijmans, 2017). 

Regarding elevation, topography data are from SRTM with a resolution of 1 arc-second 

(30 meters) .3  

Table 3-1. Soil and climate data used as input to QUEFTS-R and spatial modeling 

Covariate Map Source of Map 

Soil H2O pH pH pHH2O_M_agg30cm_AF_1km.tif1a 

Soil organic carbon (g/kg)  Corg  OC_M_agg30cm_AF_1km.tifb 

Soil total nitrogen (g/kg)  Norg  N_M_agg30cm_AF_1km.tif(b 

Soil available phosphorus (mg/kg)  Pav  P_M_agg30cm_AF_1km.tifb 

Soil total phosphorus (mg/kg)  Ptot  P.T_M_agg30cm_AF_1km.tifb 

Soil exchangeable potassium (mmolc/kg)  KExch  K_M_agg30cm_AF_1km.tifb) 

Soil root zone depth  Rzd gyga_af_erzd__m_1km.tifb 

Precipitation (mm) prec wc2.1_2.5m_prec.tifc 

Maximum temperature (°) Tmax wc2.1_2.5m_tmax.tifc 

Minimum temperature (°) Tmin wc2.1_2.5m_tmin.tifc 

Digital elevation (m) Elev SRTM 1 Arc-Second Global.tifd 
a. Hengl et al. (2015); b. Hengl et al. (2017); c. Fick and Hijmans (2017); and d. Download – CGIAR-CSI SRTM. 

 
3 Download – CGIAR-CSI SRTM. 

https://srtm.csi.cgiar.org/download
https://srtm.csi.cgiar.org/download
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The map of soil available P (in ppm) represents data according to POlsen (ppm) that were 

converted from the source map, which represents data according to PMehlich3 (100 ppm). The 

conversions are given by Eq. 3-1, based on rules derived from data presented by Sawyer and 

Mallarino (1999) and suggested by de Pater (2015), according to Leenaars et al. (2018b). The data 

presented by Sawyer and Mallarino (1999) are visualized in Figure 3-2. 

Figure 3-3. Relationships between soil K contents measured according 

to NH4Ac and according to Mehlich3, differentiated 

according to soil pH (Sawyer and Mallarino, 1999) 

Figure 3-2. Relationships between soil P contents measured according 

to Olsen and according to Mehlich3, differentiated 

according to soil pH (Sawyer and Mallarino, 1999) 
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 if pH < 6.5 → POlsen (ppm) = 0.55 ∗

PMehlich3(ppm/100)

100

else if pH < 7.3 → POlsen (ppm) = 0.50 ∗
PMehlich3(ppm/100)

100
 

else POlsen (ppm) = 0.45 ∗ 
PMehlich3(ppm/100)

100

 

 

(3-1) 
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 if pH < 7.3 → KExch(ppm) =

[KMehlich3(ppm) − 14.5]

0.825
,

and KExch(mmolc/kg) =
[
[KMehlich3(ppm) − 14.5]

0.825 ]

39
= −0.45 + 0.031 ∗ KMehlich3(ppm)

else KExch(ppm) =
[KMehlich3(ppm) − 14.5]

0.825
,

and KExch(mmolc/kg) =
[
[KMehlich3(ppm) − 21]

0.73 ]

39
= −0.738 + 0.035 ∗ KMehlich3(ppm)

 
.

 (3-2) 

The map of soil exchangeable K represents data (Cmolc/kg) measured according to K-NH4Ac, 

which were converted from the source map that represented data for extractable K (in ppm) 

measured according to KMehlich3. The conversions given by Eq. 3-2 were also based on rules 

derived from data presented by (Sawyer and Mallarino, 1999) and suggested by de Pater (2015), 

according to Leenaars et al. (2018b). The data presented by Sawyer and Mallarino (1999) are 

visualized in Figure 3-3. The soils of sites were mainly sandy (Bua et al., 2020) and acidic, with a 

low level of exchangeable potassium (KExch). The mean pH was 6.06. The minimum and 

maximum POlsen values were 2.03 mg/kg and 9.02 mg/kg, respectively. The majority of soil 

chemical properties were below average for optimal maize production (Table 3-2). 

Table 3-2. Summary of critical soil property levels for the 889 on-farm trials data 

 Eleva  

(mm) 
Rzdb 

Corgb 

(g/kg) 

Norgb 

(g/kg) 

Ptb 

(mg/kg) 

POlsenb 

(mg/kg) 

KExchb 

(mmol/kg) 
pHb 

Min 115 10 3 0.20 112 2.03 1.88 5.4 

Max 446 150 16 1.25 468 9.92 3.64 6.5 

Mean 203.49 74.85 5.80 0.54 214.05 3.87 2.82 6.06 

SD  64.18 28.29 2.72 0.23 81.97 1.51 0.34 0.17 

CV 32% 38% 47% 43% 38% 39% 12% 3% 
 

Table 3-3. Summary of critical soil property levels for the 318 on-station trials data 

 Eleva 

(mm) 
Rzdb

 
Corgb 

(g/kg) 

Norgb 

(g/kg) 

Ptb 

(mg/kg) 

POlsenb 

(mg/kg) 

KExchb 

(mmol/kg) 
pHb 

Min 13 0 4 0.311 113 2.00 1.99 5.4 

Max 356 150 15 1.206 267 8.49 4.85 6.4 

Mean 241.57 116.80 7.48 0.79 209.33 4.25 2.74 6.04 

SD 49.50 42.32 4.05 0.24 34.25 0.98 0.54 0.17 

CV 20% 36% 54% 30% 16% 23% 20% 3% 
a. Download – CGIAR-CSI SRTM; b. Hengl et al. (2017), c. Hengl et al. (2015); Elev = Elevation, Rzd = Root zone depth, Corg = Organic 

Carbon, Norg= Organic nitrogen, Pt = Total phosphorus, POlsen = Phosphorus Olsen, KExch = Exchangeable Potassium; Min = Minimum; 
Max = Maximum, SD = Standard Deviation; CV = Coefficient of Variation. 

Average monthly rainfall and minimum and maximum temperatures were derived from the 

WorldClim database and are summarized in Figure 3-4. Those data were classified based on the 

https://srtm.csi.cgiar.org/download
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suggested planting date for maize in Ghana as a function of AEZ (Adu et al., 2014) and on the 

assumption that maize was harvested four months after planting. There are two seasons in terms 

of planting: minor and major. September is the month with the highest rainfall amount; March and 

December are the hottest and coolest months, with minimum and maximum average temperatures 

from 1992 to 2017 of 19.5°C and 37.4°C (Figure 3-4). 

3.2.3 Diagnostic to Select Grain Yield Data  

The dataset used in this paper contained experimental data with yields expressed in different units: 

kilograms per hectare (kg/ha), metric tons per hectare (mt/ha), and megagrams per hectare 

(Mg/ha). Therefore, to harmonize and facilitate the reading of the yield units, they have all been 

converted to kg/ha.  

 

Figure 3-4. Mean monthly maximum and minimum temperatures (°C) 

and rainfall during maize planting and growth (1990-2017) 

(Fick and Hijmans, 2017) 
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In farm trials, the yield varied from 11 to 5,030 kg/ha in the control plot (no fertilizer) and from 

141 to 8,230 kg/ha with fertilizer application. The average yield over the years was nearly 

1,956 kg/ha. For the station trials, the yield varied from 100 to 5,030 kg/ha in the control plot (no 

fertilizer) and from 400 to 6,030 kg/ha with fertilizer. Figure 3-6 and Figure 3-5 show grain yield 

per year, boxplots of yields per year, and the dispersion of yields across boxplots. Eighty percent 

of the yield data from farm trials were obtained between 2010 and 2012. Some yield data are 

beyond 2-3 mt/ha in control and above 5-6 mt/ha, reaching 6.5, 7, and 8 mt/ha when fertilizers 

were applied (yield of 2001, Figure 3-6). Those yield data points were inconsistent and extremely 

higher than the range reported in the literature. According to USAID/IFDC (2015), potential yield 

with Ghana maize varieties Obatanpa and Mamaba is 4-5 mt/ha and 6-7 mt/ha, respectively. 

However, Adu‐Gyamfi et al. (2019) conducted a study with Obatanpa and showed that maize yield 

can reach 6.5 mt/ha by applying fertilizer. In addition, the data point where yield reaches 8 mt/ha 
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Figure 3-5. Maize yield spatio-temporal variability at farm experimental level 

Figure 3-6. Maize yield spatio-temporal variability at station experimental 

level 
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in 2001 is located in the Deciduous Forest/Ashanti region, where climatic conditions are adequate 

to get such yield: Tmin = 19°, Tmax = 28°, summation of rainfall during the four growing months 

of 540 mm, field elevation 400 m, and rootable zone depth 150 cm. Based on factual parameters 

and scientific background on maize fertilizer research, we did not exclude those exceptional 

(7, 8 mt/ha) yield data in the study. 

3.3 Experimental Design 

On the farms, trials concerned four AEZs, and on the stations, trials concerned five AEZs: Guinea 

Savannah (farm n=698, station n=43), Semi-Deciduous Forest (farm n=124, station n=85), Sudan 

Savannah (farm n=4; station n=19), Forest-Savannah Transitional (farm n=63; station n=164), 

and Coastal Savannah (farm n=0; station n=7). The treatments included a control (T0 = no 

fertilizer), those in which PK, NK, and NP were applied and thus N, P, or K was omitted, 

respectively, and those in which NPK was applied. All experiments in which NPK was combined 

with micronutrients were excluded from the study. Organic fertilizers were quantified as NPK in 

the experiments in which they were applied (Appendix , B, and C). 

Table 3-4. Fertilizer rate and combination on farm 

NPK  

Treatment  
Observations 

Nutrient Rate (kg/ha) Screened Treatment  

Combinations for the Correlation Test N P K 

T0 373 0 0 0 Included 

HHH 20 90-180 40-90 40-60 Included 

HHL 1 120 60 0 Dropped 

HLH 1 120 0 60 Dropped 

HLL 38 90-135 0 0 Included 

LHH 2 0 50 60 Dropped 

LLL 15 7-23 3-15 5-15 Included 

LLM 4 24-25 3-4 26 Dropped 

LMM 1 23 23 23 Dropped 

MHH 236 40-86 40-60 40-74 Included 

MLH 6 33-75 09-12 42-78 Dropped 

MLL 61 45-90 0-19 0-20 Included 

MMH 4 69-70 33-34 86 Dropped 

MML 5 58-86 25-38 13-19 Dropped 

MMM 122 30-82 20-38 20-39 Included 

All 889 
    

Source: Bua et al. (2020). T0 = control, H = high level, M = medium level, and L = low level. 

Various types of inorganic and organic fertilizers were used, including NPK 15-15-15; urea; 

ammonium sulfate; nitrogen, phosphorus, and sulfur; diammonium phosphate; NPK 20-10-10; 

NPK 23-10-5; NPK 20-20-20; muriate of potash; and potassium. Organic fertilizers included 

poultry manure, cow dung, household waste, market waste, fertisol, biochar, palm bunch ash, and 

plant residues (C. ordorata, C. juncea, and maximum P) as green manure (Appendices A, B, and 

C). Field fertilization treatments included farmer practice, optimal nutrient management, nutrient 

omission treatments based on optimal nutrient management, and various fertilizer treatment rates 

(Bua et al., 2020). For inorganic fertilizers, all rates were applied in kilograms of product per 

hectare. All P2O5 and K2O values were converted back to kilograms of P or K by dividing P2O5 by 

2.29 and K2O by 1.21, based on molar weights, respectively. 
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Table 3-5. Fertilizer rate and combination on-station 

NPK 

Treatment  
Observations 

Nutrient Rate (kg/ha) Screened Treatment  

Combinations for the Correlation test N P K 

T0 69 0 0 0 Included 

HHH 32 90-180 45-90 45-91 Included 

HHL 14 120-180 60-90 0 Included 

HHM 2 180 90 45 Dropped 

HLH 19 109-281 0-90 45-90 Included 

HLL 16 90-127 0 18 Included 

HLM 4 118-163 1 36 Dropped 

HMH 3 180 45 90 Dropped 

HML 12 120 30 0 Included 

LHH 6 0 90 90 Dropped 

LML 18 0 30-60 0 Included 

LMM 12 0-24 20-45 20-46 Included 

MHH 14 45-60 40-90 40-90 Included 

MHL 22 40-80 45-60 0 Included 

MLH 5 45 0 45 Dropped 

MLL 33 37-82 0-18 0-19 Included 

MLM 2 60-73 0 36 Dropped 

MML 22 40-80 26-30 0 Included 

MMM 4 30-60 20-40 20-41 Dropped 

All 309     

Source: Bua et al. (2020). T0 = control, H = high level, M = medium level, and L = low level. 

3.4 QUEFTS, MLR, and ML Models 

3.4.1 QUEFTS Model  

The QUEFTS model was first proposed by Janssen et al. (1990) to estimate maize yield in tropical 

areas with and without fertilization. Over time, researchers modified it and adapted the model for 

several crops, such as cassava (Ezui et al., 2017), wheat (Sattaria et al., 2014), watermelon (Kang 

et al., 2020), and tea (Tang et al., 2020). 

Step 1 

In the first step, the QUEFTS model uses purely empirical linear and nonlinear multiple regression 

equations to estimate the potential soil supply of available N, P, and K, based on organic carbon 

(Corg), phosphorus Olsen (POlsen), exchangeable potassium (KExch), and pH, and optionally 

organic nitrogen (Norg) and total phosphorus (Pt), as independent variables (Sattaria et al., 2014). 

Additional to the nutrient supply from the soil, nutrient supply from fertilizer application is 

determined by adding a term that calculates the fertilizer recovery of applied fertilizers. Default 

values for maximum recovery fractions of N, P, and K in QUEFTS are 0.5, 0.1, and 0.5, 

respectively. If appropriate data are available, values can be calculated for each case, but in our 

study, these default values were used. A crucial requirement for the assessment of the maximum 

supply of an available nutrient, from the soil as well as from input, is that all other growth factors, 

including the availability of nutrients other than the one under study, are at the optimal level. For 

that assessment, the following relations are developed (Janssen et al., 1990): 

 SN = αNfNCorg + INRN 
 

(3-3) 

 SP = αPfPCorg + βPPOlsen + IP ∗ RP 
 

(3-4) 

 
SK =

αKfKKExch

γK + βKCorg
+ IKRK 

(3-5) 



 

18 

where SN, SP, and SK are supplies of crop-available N, P, and K, respectively; α, β, and γ are 

empirical parameters; IN, IP, and IK refer to N, P, and K inputs to the system, fi is a pH dependency 

coefficient (Eqs. 3-8, 3-9, and 3-10), and RN, RP, and RK refer to the maximum recovery fraction 

of each fertilizer. When data on organic nitrogen are available, the soil supply of available nitrogen 

can be calculated by Eq. 3-6 (Sattaria et al., 2014). The value of αNN is 10 times that of αN in 

Eq. 3-3, assuming that the C:N ratio of the organic matter is 10. 

 SN = αNNfNCorg + INRN 
 

(3-6) 

 SP = qPfPPt + βPPOlsen + IPRP (3-7) 

Eq. 3-7 calculates SP with Pt (Sattaria et al., 2014). The default values of αP in Eq. 3-4 and qP in 

Eq. 3-7 are 0.35 and 0.014, and hence, their ratio is 25. This suggests that the ratio of Pt/Corg is 

also 25 when Pt is expressed in mg/kg and Corg in g/kg. Such a value was found as an average for 

this ratio in areas where no fertilizer P had been applied, according to Janssen et al. (1990). Once 

farmers start to apply inorganic fertilizer P, the ratio increases, and then it is recommended to use 

only Eq. 3-7 (Sattaria et al., 2014). The coefficient fi (i = N, P, and K) in Eqs. 3-3 through 3-7 is 

used to describe the pH dependency of soil organic matter mineralization, P solubility, and K 

exchangeability, as discussed in more detail by Diest (1980), Janssen and Guiking (1990), and 

Janssen et al. (1990). 

 fN = 0.25 ∗ (pH − 3) 
 

(3-8) 

 fP = 1 − 0.5 ∗ (pH − 6)
2 

 
(3-9) 

 fK = 0.625 ∗ (3.4 − 0.4pH) (3-10) 

Eqs. 3-8, 3-9, and 3-10 express the pH correction factors for Eqs. 3-3, 3-4, and 3-5, respectively. 

Step 2  

In this step, QUEFTS quantifies the relation between potential soil nutrient supply and actual N, 

P, and K uptake. The relationship between the potential supply of nutrients and actual absorption 

is based on the following considerations. First, the nutrients are paired for comparison. Therefore, 

the relationship between the actual uptake and the potential supply of N is calculated twice, 

resulting in two estimates of the actual uptake of each of the three nutrients. Sattaria et al. (2014) 

reported that Ui(j) refers to the uptake of i with j. If i = N, j may be P or K. In other words, two 

values for N uptake can be calculated based on the potential supplies of P and K. In compliance 

with the Law of the Minimum, QUEFTS utilizes the lowest of the two N uptake estimates for 

further calculations. P and K uptake are calculated in the same way (Janssen et al., 1990). Eq. 3-11 

models the process of nutrient uptake calculation, where Ui(j) is actual nutrient (i) uptake as a 

function of nutrient (j), (ai) is physiological efficiency (PhE) or internal efficiency (IE) at the 

maximum accumulation of nutrient (i) (kg grain/kg nutrient [i]), and (di) is physiological 

efficiency (PhE) or internal efficiency (IE) at maximum dilution of nutrient (i) (kg grain/kg 

nutrient [i]) (Shehu et al., 2019); and ri is the minimum nutrient uptake required to produce any 

grain. According to Janssen and Guiking (1990) and Janssen et al. (1990), ri is about 5 kg for N, 

0.4 kg for P, and 2 kg for K per hectare.  
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Ui(j)

=

{
 
 

 
 

Si
ri+(Sj − ri)(dj di⁄ )

Si −
0.25 [Si − ri-(Sj − rj)(aj dj⁄ )]

2

(Sj − rj)(dj ai⁄ − aj di⁄ )

 

if       Si< ri+(Sj − rj)(aj dj⁄ ) ; 

if    Si > ri+(Sj+rj)[2(dj ai⁄ ) −

(aj di⁄ )] ; 

Else. With i, j = N, P, K, i ≠ j 

 
 
 

(3-11) 

Step 3 

The third step determines the relationship between the actual absorption of N, P, and K of step 2 

and the range of yield based on data collected from fertilized and unfertilized maize. This results 

in six yield estimates. For each i (N, P, or K), a yield estimate is calculated for maximum 

accumulation and dilution of that nutrient within the crop. Yield ranges are calculated between Yi
a, 

yield at maximum accumulation (a), and Yi
d, yield at maximum dilution (d), as functions of the 

actual uptake (Ui) and the minimum uptake required to produce any grain (ri). The potential yield 

should thus be estimated before running the QUEFTS model. For this study, we assumed that the 

maximum attainable maize yield is 10 mt/ha. 

Step 4  

In the last step, yield ranges were combined for the ultimate yield estimate. One yield estimate is 

predicted by averaging the six yield (Yi
a, Yi

d) estimates calculated in step 3. The process of 

combining the production ranges calculated in step 3 consists of two parts. The yield ranges are 

first combined in pairs (N and P, N and K, and P and K), through Eq. 3-12, and then the average 

yield of nutrients is calculated using Eq. 3-13. This average is an estimate of the final (YE) 

prediction of the actual yield (Smaling and Janssen, 1993). 

 

Yij=Yj
a

2(min(Yj
d,Yk

d,Ymax)-Yj
a) (Ui-ri-(Yj

a di⁄ ))

(min(Yj
d,Yk

d,Ymax) ai⁄ )- Yj
a di⁄

 

− 
(min(Yj

d,Yk
d,Ymax)-Yj

a) (Ui-ri-(Yj
a di⁄ ))

2

((min(Yj
d,Yk

d,Ymax) ai⁄ )- Yj
a di⁄ )

2   

 
With i, j, k = N, P, K, and i ≠ j ≠ k 

(3-12) 

 
 

YE =
YNP + YNK + YPN + YPK + YKN + YKP

6
 

(3-13) 

In the analysis of soil nutrient supply against soil parameters (step 1), no distinction was made for 

AEZs. The main reason for this was that, ideally, one model calibration should be made for the 

whole dataset (Ravensbergen et al., 2021). A practical reason was that few data points from certain 

AEZs remained after data preparation. 

R (http://www.R-project.org) was used to simulate QUEFTS model scenarios employing scripts 

based on Sattaria et al. (2014). 

3.4.2 Multiple Linear Regression Models 

Multiple Linear Regression (MLR) was used to identify the combination of variables affecting 

maize yield at the farm and station levels. The linear multiple regression is of the form: 

http://www.r-project.org/
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 y = β0 +∑βixi

n

i=n

 (3-14) 

where y is the maize yield, β is the estimated regression coefficient, and xi (i=1,2,…, n) is the set 

of predictor variables. MLR models were constructed using the stepwise variable selection method 

based on Akaike Information Criterion (AIC) using R “MASS” (Venables and Ripley, 2002) and 

“CAR” (Fox and Weisberg, 2019) packages. AIC is an estimator of prediction errors and, thereby, 

the relative quality of statistical models for a given set of data. It evaluates how well a model fits 

the data from which it was generated (Bevans, 2020), compares different possible models, and 

determines which one is the best fit for the data (Mack, 2016). It is calculated from: 

• The number of independent variables used to build the model. 

• The maximum likelihood estimates of the model (how well the model reproduces the data). 

The formula for AIC is: 

 AIC =  2 ∗ K −  2ln(L) (3-15) 

where K is the number of independent variables used and L is the log-likelihood estimate (the 

likelihood that the model could have produced the observed yield). The best-fit model according 

to AIC is the one that explains the greatest amount of variation using the fewest possible 

independent variables (Mack, 2016). We performed the likelihood ratio test using the “ANOVA” 

function. The coefficients of determination (R²) of final models (containing all significant 

treatments and covariates) were calculated as the squared Pearson correlation between predicted 

and observed values. Predicted values were calculated using the estimated fixed effects 

coefficients for treatments and covariates. 

3.4.3 Random Forest Prediction  

Random forest (RF) methodology is used to address two main classes of problems: (1) constructing 

a prediction rule in a supervised learning problem and (2) assessing and ranking variables based 

on their ability to predict the response (Boulesteix et al., 2012). In this study, RF models were 

trained to predict maize yield maps using multiple biophysical variables as predictors (Table 3-1). 

The RF algorithm has become attractive in several applications because it can cope with high-

dimensional data (the so-called “n << p curse”) and can even be applied in difficult settings with 

highly correlated predictors (Boulesteix et al., 2012; Kassambara, 2018; Genuer and Poggi, 2020). 

In addition, it does not depend on a specific stochastic model and can also run and include non-

linear association models between the covariates and the dependent variable (Jeong et al., 2016; 

Genuer and Poggi, 2020; Timsina et al., 2021). The RF algorithm combines numerous prediction 

trees in which each tree is built from a bootstrap4 sample drawn from the calibration set. The 

random forest package in R Random Forest was used to simulate the RF model. 

3.5 Geospatial and Statistical Analysis 

The first step in the geostatistical analysis was the definition of a regularly spaced grid covering 

the study area, with a grid size equal to 0.25 km². Second, spatial models were defined to predict 

crop yield at visited and unvisited grid cells using the values of the covariates as: 

 
4 A Gentle Introduction to the Bootstrap Method (machinelearningmastery.com). 

https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
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 Y(s)  = f [Rain, Tmax, Corg, Norg, POlsen, pH, Rzd, Sand, Clay, Silt](s)  
+  ε(s) 

(3-16) 

where Y(s) represents the maize yield at location “s” that is modeled in two components: a trend 

function “f” and an error model ɛ(s), denoting the small-scale fluctuations around “f” with variance 

“Var (ɛ(s)).” The function “f” determines the global influence of the external covariates 

(Table 3-1) except for fertilizers (FN, FP, FK), which are only used in statistical analysis through 

MLR and QUEFTS and not in the geospatial analysis modeled by ML because the applied 

fertilizers cannot be associated with any node of the created grids. Thus, “f” was modeled as a 

global predicted linear function using ML. 

3.5.1 Geospatial Analysis 

QUEFTS and MLR were applied to model the maize yield. The coefficients of these models were 

used to predict yield at unvisited locations using the grid cell values of the external covariates. 

Moran’s index (Im) (Moran, 1948) was used to assess the significance of the pattern of yield data 

distribution (Antwi et al., 2016; Salima and Bellefon, 2018). The significance of Moran’s index 

can also be expressed numerically as the probability of rejecting the null hypothesis (H0). H0 states 

that the observed yield value is random. The p-value is the limit value of rejection and depends on 

the number of permutations performed (Monte Carlo method). A low p-value indicates that the 

risk of rejecting the null hypothesis when it is true is low and therefore the observed value is 

significantly different from a random distribution. 

The datasets were subjected to exploratory analysis to identify the outliers, and square root 

transformations were carried out to ensure normal distribution. After this, semivariogram analysis 

was done using R software. The normalized data were then analyzed in a geostatistical way by 

fitting different semivariogram models iteratively to measure the spatial variability (Vieira and 

Gonzalez, 2003; Liu et al., 2006; Oliver, 2010). The examination of the semivariogram can be 

calculated using the equation: 

 γ(h) =
1

2N(h)
∑[Z(xi) − Z(xi+h)]

2
N

i=1

 (3-17) 

where N(h) is the number of pairs of points distant from each other separated by a vector h 

(distance). In addition, the semivariogram provided the necessary input parameters for spatial 

interpolation (Oliver, 2010). If the semivariogram increases with distance and stabilizes at the 

a priori variance value, it means that the regionalized variable under study is spatially correlated 

and all neighbors within the correlation range can be used to interpolate values that were not 

measured (Vieira and Gonzalez, 2003). Any geostatistical calculation will require semivariances 

for any distance within the measured domain; there is a need to fit a mathematical model that 

would describe the variability (Oliver, 2010; Méneroux, 2018-2019) through theoretical 

semivariograms. In this study, the experimental semivariograms were all fitted using the 

“autofitVariogram”5 function in the R software. 

3.5.2 Digital Yield Prediction Map  

Random forest and similar machine learning techniques are already used to generate spatial 

predictions (Gräler et al., 2016; Jeong et al., 2016; Hengl et al., 2018; Dutta et al., 2020; Lovelace 

 
5 R: Automatically fitting a variogram (r-project.org). 

https://search.r-project.org/CRAN/refmans/automap/html/autofitVariogram.html
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et al., 2021; Paudel et al., 2021; Timsina et al., 2021), but the spatial location of points (geography) 

is often ignored in the modeling process. Spatial autocorrelation, especially if still existent in the 

cross-validation residuals, indicates that the predictions are possibly biased, and this is suboptimal 

(Hengl et al., 2018). 

In this study, the digital yield prediction map (DYPM) was designed using the RF algorithm 

coupled with principal component analysis (Bertolini et al., 2015; Bertolini et al., 2018), called the 

random forest for spatial predictions framework (RFsp) (Hengl et al., 2018). RFsp is a method in 

which buffer distances from observation points are used as explanatory variables, thus 

incorporating geographical proximity effects into the prediction process. Dimensionality reduction 

by ordinations is a popular tool in vegetation science to extract key information, frequently 

corresponding to ecological gradients, from large covariate matrices (Lovelace et al., 2021). Buffer 

distances are first derived for each model (QUEFTS, MLR-AIC, RF) yield-predicted point, using 

the buffer function in the “GSIF” R package (Hengl, 2012), which produces a gridded map for 

each observation point. The spatial prediction model is defined in the formula: 

 YModel  ∼  Layer. 1 + Layer. 2 + Layer. 3 +. . . + Layer. . . Layer. n  (3-18) 

which means that the model yield predicted is a function of “n” covariates for on-farm and on-

station trials. In this method, covariates are the principal component (PC) from principal 

component analysis. Next, we overlay the yield-predicted point and covariates to create a 

regression matrix so that we can tune and fit a “ranger model” (Wright and Ziegler, 2017) and 

generate a predictions yield map base on QUEFTS, MLR-AIC, and RF maize yield estimated. 

3.5.3 Statistical Analysis 

Associations between data were evaluated by Pearson’s correlation analysis, and linear regression 

equations were estimated by least squares regression. Differences between observed and predicted 

yield were evaluated by paired Student’s t-test at the 0.05 significance level. Variability 

explanation and model accuracy were assessed using three statistical tests, i.e., root means square 

error (RMSE), coefficient of determination (R²), and adjusted coefficient of determination 

(Adj. R²): 

 

RMSE = √
∑ (YPi − YOi)

2n
i=1

n
 

(3-19) 

 

R2 =

(

 
∑ (YPi − Y̅Oi)
n
i=1 (YPi − Y̅Oi)

√∑ (YPi − Y̅Oi)
2n

i=1
√∑ (YPi − Y̅Oi)

2n
i=1 )

 

2

 

(3-20) 

 
 

Adj. R2 = 1 − [
(1 − R2)(n − 1)

n − k − 1
] 

(3-21) 

where YPi and YOi represent the values of predicted and observed yield (kg/ha), respectively; n is 

the number of data point values; YO̅̅ ̅ represents the average value of observed yield (kg/ha); and k 

is the number of independent regressors. The equations of RMSE measure the average discrepancy 

between the predicted and observed yield data with the same unit (kg/ha). It is an error-index in 

which the lower the value indicates better model performance (Moriasi et al., 2007). The R² 

estimates the combined dispersion against the single dispersion of the observed and predicted yield 

series (Krause et al., 2005); it ranges between 0 and 1, where a value of 0 means no correlation at 
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all and a value of 1 means the dispersion of prediction is equal to that of observation. Both R² and 

Adj. R² give an idea of how many yield data points fall within the line of the regression equation. 

However, there is one main difference between R² and the Adj. R²: R² assumes that every single 

covariate explains the variation in the observed yield response to fertilizer, whereas the adjusted 

Adj. R² tells us the percentage of variation explained by only the covariates that affect the observed 

yield response to fertilizer. Adj. R² also is between 0 and 1. 

Data were analyzed, modeled, simulated, and visualized via RStudio© (http://rstudio.org/) and 

GeoDaTM (https://geodacenter.github.io/) spatial analysis software. Only Figure 4-4 was done 

using Microsoft 365 Excel.6 For geostatistical analyses, the R packages “gstat” (Pebesma, 2004; 

Gräler et al., 2016) and “geoR” (Ribeiro Jr and Diggle, 2006), representing the state-of-the-art 

according to Heuvelink and Rossiter (2021), were used in the RStudio© integrated development 

environment. 

 
6 https://office.microsoft.com/excel. 

http://rstudio.org/
https://geodacenter.github.io/
https://office.microsoft.com/excel
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 RESULTS AND DISCUSSION 

4.1 QUEFTS-Simulated Maize Yield  

Average yield observed (AYO) and average yield predicted (AYP) in farmers’ trials (Figure 4-1A) 

were lower than those in the on-station trials (Figure 4-1B) at 1,957-2,389 kg/ha and 2,328-2,916 

kg/ha, respectively. The differences observed in yields between farmers’ trials and on-station 

research trials can be attributed to various biophysical constraints (Onduru and Du Preez, 2007; 

Mugwe et al., 2009). Mugwe et al. (2009) identified that possible explanations for this discrepancy 

in yields are better management and agronomic practices on-station than on farms. The strong 

effects of management often result in patterns of decreasing soil fertility, as reported. 

The QUEFTS model failed to account for the actual levels of maize yields: the AYPs by QUEFTS 

were higher than the AYOs in the most treatment combinations (Table 4-1 and Table 4-2). The 

model-predicted yield varied with soil chemical properties and fertilizer input levels. There were 

low positive correlations between the observed maize yields and the QUEFTS-predicted yields on 

the farm (r = 0.50, p < 0.001 < 0.05) and on-station (r = 0.35, p < 0.001 < 0.05) (Figure 4-2). 

QUEFTS explained up to 25% and 12% of the yield response variability from fertilizer and soil 

chemical properties, respectively, in farm and station trials. There was also low correlation 

between the observed maize yields and the QUEFTS-predicted yields based on the NPK 

combination (Table 4-1 and Table 4-2) and the AEZ. 

On-station, among the NPK combinations, LML (0:30-60:0 kg/ha) and MHH (45-60:40-90:40-90 

kg/ha) showed the highest negative correlation between the AYO and AYP (r = -0.80, p < 0.05 

and r = -0.69, p < 0.05, respectively), and the highest AYP (4,688 kg/ha) was from the HHH (90-

180:45-90:45-91 kg/ha) treatment. The control treatment (T0) showed low positive correlation 

(r = 0.17, p > 0.05) at 1,570 kg/ha AYP against 1,473 kg/ha AYO. However, the relation between 

observed and predicted yield of most NPK treatment combinations is not statistically significant, 

with a high a standard deviation (SD). Treatment MHH suggests that QUEFTS calculates lower 

yields when P and K increase because there is a negative coefficient of correlation. 

Table 4-1. Summary of observed and predicted yield responses for on-station NPK 

combinations 

NPK 

Treatment 

Yield Observed Yield Predicted 
R² r p 

Mean SD Mean SD 

T0 1473 1042 1570 569 0.03 0.17  

HHH 2812 1233 4688 556 0.11 -0.33  

HHL 3639 1027 4641 424 0.07 -0.27  

HLH 1927 597 3775 468 0.16 -0.4  

HLL 2311 1116 2737 470 0.19 -0.44  

HML 4042 472 3773 268 0.19 -0.43 * 

LML 1261 367 1646 492 0.65 -0.8 * 

LMM 2361 1258 2364 846 0.19 -0.43  

MHH 2427 1387 3441 771 0.48 -0.69 * 

MHL 3266 1014 3209 488 0.00 0.03  

MLL 2171 851 2471 527 0.07 -0.26  

MML 3258 668 3093 484 0.14 0.38  

All 2389 1300 2916 1225 0.12 0.35 * 
* denotes a statistically significant test. 

At AEZ level, where on-station trial data had been collected, only in the Forest-Savannah 

Transitional (FST) and Sudan Savannah (SS) was the relation between AYO and AYPstatistically 
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significant (r = 0.49, p < 0.05 and r = 0.48, p < 0.05, respectively), with positive correlation. The 

AYPs in those two AEZs were 1,464 kg/ha for SS and 3,000 kg/ha for FST, which are above the 

AYOs of 794 kg/ha and 2,900 kg/ha. These AYOs and AYPs tend to increase in function of forest 

gradient. The poor correlations suggest that factors other than soil fertility were limiting in the 

AEZs, causing actual yields to be lower than QUEFTS yields. 

Table 4-2. Summary of observed and predicted yield responses based on-farm NPK 

combinations 

NPK 

Treatment 

Yield Observed Yield Predicted 
R² r p 

Mean SD Mean SD 

T0 1181 979 1508 539 0.13 0.37 * 

HHH 3397 702 4217 386 0.27 0.52 * 

HLL 3208 1647 2887 899 0.16 0.40 * 

LLL 2485 883 1812 451 0.08 0.28 >0.05 

MHH 2212 1124 3164 290 0.01 -0.06 >0.05 

MLL 3806 1912 2863 583 0.00 0.06 >0.05 

MMM 1999 956 2371 469 0.09 0.30 * 

All 1957 1389 2328 925 0.25 0.50 * 
* denotes a statistically significant test.  

On-farm, the NPK treatment combination HHH (90-180:40-90:40-60 kg/ha) showed the highest 

positive correlation between the observed yield and predicted yield (r = 0.52, p < 0.05). The 

observed control (T0) had a positive correlation with the predicted control (r = 0.37, p < 0.05) at 

1,181 kg/ha AYO vs. 1,508 kg/ha AYP. Variability studies at AEZ level reveal that, in FST, the 

correlation between AYO and AYP was positive (r = 0.52, p < 0.05), with 28.82% of yield 

variation in AYO explained by the regression model. In SS and SDF, the variability explanation 

by QUEFTS is very weak at 7.77% and 1.57%, respectively. 

The coefficients of variation (CVs) for observed maize yields and QUEFTS-predicted yields based 

on NPK combination rate and AEZ were high. On-station and on-farm, CVs for observed yields 

were 54% and 71%, respectively. However, the CVs decreased with increasing amounts of NPK 

in the model, at 42% and 40% for predicted yields based on NPK treatment combination (high, 

medium, or low). The same is true when the yields of the trials were categorized according to AEZ. 

Indeed, the coefficient of variation increased along the gradient (SDF<FST<GS). The high 

variability in observed yields and predicted yields for NPK rates is illustrated by the large 

differences between their minimum and maximum values (Figure 4-2) and the standard deviation 

(Table 4-1 and Table 4-2). 

QUEFTS is designed to provide an estimate of yield related to soil fertility, assuming that maize 

growth and development is not compromised by factors other than NPK, such as drought, lack of 

plot drainage, limited root depth and penetration, poor crop management, or other yield-reducing 

factors (Linneman et al., 1979; Janssen et al., 1990). Specifically, the QUEFTS model does not 

consider factors such as soil root depth, water-holding capacity, environmental temperature, 

physical soil characteristics, diseases, plant population, varietal choice, weed infestation, sowing 

time, or other crop management practice, despite their importance in determining crop yields at 

farm and station research levels. In the QUEFTS simulation, 0.5, 0.1, and 0.5 were used as the 

default for the maximum recovery fractions of N, P, and K; however, given the results revealed by 

QUEFTS, we can say that we do not obtain such a great value in practice in the fields. Previous 

studies have indicated that improved crop yields are obtained when soil fertility, soil depth, farm 

management, and climatic conditions (rainfall, temperature) are managed synchronously (Sadras 

and Calvino, 2001; Guilpart et al., 2017; Ravensbergen et al., 2021). This study has shown that the 
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QUEFTS model alone is not sufficient to explain actual maize yield response variability, either 

on-station or on-farm, and that soil fertility was therefore not the only factor limiting maize 

production. Similar studies in Africa (Mulder, 2000; Onduru and Du Preez, 2007; Njoroge, 2019) 

have also shown that QUEFTS-predicted yields are much higher than and correlate poorly with 

observed yields. Thus, improvement of maize yields in Ghana AEZs may require a more 

comprehensive model that considers covariates (including climate and physical soil properties and 

management) in addition to soil chemical and biological fertility. Despite this wide variability in 

yield response to fertilizer, we still know little about the spatio-temporal pattern of yields. In this 

study, soil chemical fertility status was variable across Ghana, as shown in Table 3-2 and Table 

3-3. For example, soil organic carbon had a CV of 47% and 54%, and total nitrogen had a CV of 

43% and 30% on-farm and on-station, respectively. 
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Figure 4-1. Average grain yield observed and predicted (A) on-farm and (B) on-station 
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Contributions of three factors (organic carbon, pH, and available phosphorus) to 50 simulated data 

point yield uncertainties were expressed by model sensitivity analysis. Figure 4-3 shows a trend 

of variability in predicted yield that was due to the variation of those three factors. When organic 

carbon varied from 5 to 25 mg/kg, CV decreased from 38% to 9%. At organic carbon equal to 

5 mg/kg, with other factors (pH, POlsen, KExch, Pt) constant, CV was 38% with QUEFTS yield 

predicted at 2,001 kg/ha. Beyond 25 mg/kg, the QUEFTS yield predictions declined. This was due 

to the C:N ratio. The larger the C:N ratio, the slower the availability of N to the plants (Singh, 

2020). In other words, the slower the availability of N to the plants, the greater the C:N ratio and 

microbial activity immobilizing N. A ratio of 20-30 results in an equilibrium state between 

mineralization and immobilization (Brust, 2019); thus, the sensitivity of the QUEFTS model is 

weak. Hence, soil organic C is used as a proxy for soil fertility (Tittonell et al., 2008b). 

The findings show that some parameters may not have high first-order sensitivity, yet they have a 

major influence on model outputs via interactions with other factors. Sensitivities to soil 

parameters dominate those for cultivar parameters in degraded soils and low-input cropping 

systems. A comparison of sensitivities among the two simulations (Appendices D and E) shows 

that organic carbon is a soil factor that limits yield the most strongly, followed by available 

phosphorus, in simulations. In low-input farming systems, other uncertainties that were not 

considered by the QUEFTS approach are likely to be dominant in some situations. In particular, 

biotic stresses caused by weed competition, plant diseases, and insect damage may greatly 

influence yield, and there are inherent uncertainties in the type, magnitude, and timing of biotic 

stresses due to the difficulties in measuring and modeling these yield-reducing factors. 

Figure 4-2. Comparison of grain yield predicted by the QUEFTS model and observed yield values 

R²= 12% 
r = 0.35 
P <0.05 

R²= 24.6% 
r = 0.50 
P <0.05 
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4.2 MLR-Simulated Maize Yield  

The results of the prior analysis showed that QUEFTS models based on six soil chemical covariates 

(Corg, Norg, Pt, KExch, and pH) are not sufficient to grasp yield response variability either on 

farm or on station. Based on those findings, we went through several MLR models considering 

other covariates in addition to those used in the QUEFTS simulation. 

Table 4-3 and Table 4-4 summarize all MLR models, their coefficient of multiple determination 

(R²), and the adjusted coefficient of multiple determination (Adj. R²). 
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Table 4-3. Summary of MLR models based on on-station covariate combinations, with 

MLR 7 including QUEFTS input variables 

 

Table 4-4. Summary of MLR models based on on-farm covariate combinations, with MLR 3 

including QUEFTS input variables  

a. Akaike Information Criterion without fertilizer; b. Akaike Information Criterion with fertilizer; *** p = 0.00, which means the test is statistically 

significant. 

On-station, MLR 1 performed with climatic parameters only explained 7% of yield response 

variability. Adding elevation (Elev) as a covariate does not change the explanation because R² 

stays unchanged. The R² could explain that elevation does not affect yield response in on-station 

trials. MLR 5 and 6 performed with soil physical parameters as covariates explained more yield 

response variability than MLR 1. The R² increases from 8% (MLR 1 and 2) to 24-29% (MLR 3, 

5, 6, 4, and 13). In MLR 3, soil physical properties explained more yield variability (R² =24%) 

than environmental parameters (MLR 1,2) and adding the elevation covariate in MLR 3 increases 

variability explanation by 5%. However, elevation added as a covariate in MLR 6, in combination 

with fertilizer, does not increase R². The same result is found in MLR 7 and 8. Indeed, soil chemical 

Dependent

variable

Elev Rain Tmin Tmax Rzd Rwhc Sand Clay Silt FN FP FK CEC pH POlsen Ex.K Pt Norg Corg YO R² Adj.R² p

1 x x x ~ 26% 26% ***

2 x x x x ~ 26% 26% ***

3 x x x x x ~ 21% 21% ***

4 x x x x x x ~ 22% 21% ***

5 x x x ~ 29% 29% ***

6 x x x x ~ 34% 34% ***

7 x x x x x x x ~ 16% 16% ***

8 x x x x x x x x ~ 18% 17% ***

9 x x x x x x x x x ~ 31% 30% ***

10 x x x x x x x x x x x ~ 29% 28% ***

11 x x x x x x x x x x x x ~ 25% 24% ***

12 x x x x x x x x x x x x x x x x ~ 32% 31% ***

13 x x x x x x x ~ 46% 46% ***

14 x x x x x x x x ~ 41% 40% ***

15 x x x x x x x x x x x x ~ 50% 50% ***

16 x x x x x x x x x x ~ 40% 39% ***

17 x x x x x x x x x x x x x x ~ 50% 49% ***

18 x x x x x x x x x x x x x x x x x x x ~ 52% 51% ***

AIC-F
(a) x x x x x ~ 31% 31% ***

AIC+F
(b) x x x x x x x x ~ 50% 50% ***

MLR

Independent

variable
Model fit

Dependent

variable

Elev Rain Tmin Tmax Rzd Rwhc Sand Clay Silt FN FP FK CEC pH POlsen Ex.K Pt Norg Corg YO R² Adj.R² p

1 x x x ~ 8% 7% ***

2 x x x x ~ 8% 7% ***

3 x x x x x ~ 24% 24% ***

4 x x x x x x ~ 29% 28% ***

5 x x x ~ 25% 25% ***

6 x x x x ~ 25% 25% ***

7 x x x x x x x ~ 41% 41% ***

8 x x x x x x x x ~ 41% 41% ***

9 x x x x x x x x x ~ 30% 27% ***

10 x x x x x x x x x x x ~ 44% 42% ***

11 x x x x x x x x x x x x ~ 47% 45% ***

12 x x x x x x x x x x x x x x x x ~ 49% 46% ***

13 x x x x x x x ~ 29% 27% ***

14 x x x x x x x x ~ 39% 37% ***

15 x x x x x x x x x x x x ~ 46% 43% ***

16 x x x x x x x x x x ~ 60% 59% ***

17 x x x x x x x x x x x x x x ~ 62% 60% ***

18 x x x x x x x x x x x x x x x x x x x ~ 66% 63% ***

AIC-F
(a) x x x x x x x x x x x ~ 48% 46% ***

AIC+F
(b) x x x x x x x x x x x x x x ~ 65% 64% ***

Model fit
MLR

Independent

variable
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properties explained up to 41% of yield variability, and combining soil chemical properties with 

elevation does not increase the R². These results could explain that interactions between elevation 

and soil chemical properties with fertilizer use do not affect yield in on-station trials. In addition, 

MLR 13, combining fertilizer (chemical or organic) and climatic parameters as covariates, 

explained yield variability at the same percentage as MLR 5 and explained more yield variability 

than MLR 1, 2, 3, 5, and 6. MLR 7, performed with soil chemical properties, explained a 41% 

yield response variability on-station. These findings show how soil chemical properties are 

fundamental in the maize production system. This result is corroborated by Braimoh and Vlek 

(2006), who showed that maize yields are overwhelmingly determined by soil quality. According 

to this research, under annual/repeated cropping in low-quality soils, the predicted maize yields 

are below 520 kg/ha. Thus, an understanding of the current status of land and its change over time 

is needed for promoting land management practices to maintain or improve land productivity and 

sustainable use of natural resources (Bindraban et al., 2000). In addition, MLR 7 (R² = 41%) 

explained more yield variability in the control plot (T0) than the QUEFTS yield estimate (R² = 

3%), and when fertilizer is used in those two prior models, the yield variability explanation in 

MLR 16 increased compared to QUEFTS. Indeed, MLR 16 explained 60% of yield response 

variability to fertilizer against 2.73% for QUEFTS. MLR 16, using the combination of soil 

chemicals properties and fertilizer applied as covariates, improved the comprehension of yield 

variability, since the R² is 60%. This result confirms those scholars who have said for several 

decades now that the low fertility of soils in Ghana is the most crucial problem with its impeded 

agriculture, keeping yields low (Kihara et al., 2016; Bationo et al., 2018; Bua et al., 2020). 

MLR 14, using fertilizer and physical soil properties as covariates, explained 39% of the variability 

on-station. Knowing that soil physical properties alone (MLR 3) explained yield variability at 24%, 

application of fertilizer reduces variability, as discussed in Section 4.1. This result supports the 

thesis that fertilizer application not only helps to increase yield, but also stabilizes yield fluctuation. 

As Figure 4-4 shows, in the control plots, the CV is very high, varying from 71% on-station to 

83% on-farm, and when fertilizer is applied, the variation drops to an average of 43% on-farm and 

36% on-station. The effect of fertilizer on grain yield can be altered or improved by soil physical 

properties, since using both as covariates explained more yield response variability than each did 

separately (MLR 3, 5, and 14). The combination of all covariates gave the highest explanation of 

yield response variability (MLR 18), as R² and Adj. R² were 66% and 63%, respectively. MLR 18 

could be the optimal model to assess yield variability because it encompasses soil physical and 

chemical properties, the environment, and fertilizer and their effects on grain yield. However, 

covariates Tmax, Tmin, Elev, Corg, Pt, KExch, Rwhc, and CEC are not statistically significant 

(p > 0.05) when MLR 18 is used. The comparison of two MLR models from the AIC algorithm, 

one simulated with all covariates plus fertilizer and the other simulated with all covariates without 

fertilizer, allows us to highlight the positive effect of fertilizer on corn yield. 
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Figure 4-4. Coefficient of variation (%) of the observed yield (CVYO) in the control plots (T0) and in 

the plots in which fertilizer was applied  

Without fertilizer in the set of independent variables, the best model from the dozens of scenarios 

produced by the AIC algorithm explained 46-48% of the variability, while the model from the 

scenarios produced by the AIC algorithm with fertilizer as a covariate in the set of independent 

variables explained 64-65% of the variability in the response of maize yield to fertilizer. Therefore, 

MLR AIC+F (Table 4-5 ) offers the most reliable way to predict yield and draw yield response 

variability on-station. Eq. 4-1 from MLR AIC+F is used to predict yield and compare observed 

yield (YO) and predicted yield. 

 YO =  f(Elev +  Rain +  Tmax +  Corg +  Norg +  POlsen +  pH +  Rzd 
+  Sand +  Clay +  Silt +  FN +  FP +  FK)  +  ε 

(4-1) 
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Table 4-5. On-station best multiple regression model structure (MLR-AIC+Fertilizer) 

Variable Coefficient Std_Error t_value Pr(>|t|)  

(Intercept) -5885.349 8586.89 -0.685 0.493639  

Elevation 11.425 3.985 2.867 0.004439 ** 

Rainfall 5.19 1.217 4.266 2.68E-05 *** 

Temperature max 298.382 101.372 2.943 0.003505 ** 

Carbon organic -398.328 38.849 -10.253 < 2e-16 *** 

Nitrogen organic 2424.193 795.697 3.047 0.002524 ** 

Phosphorus Olsen 824.131 128.283 6.424 5.32E-10 *** 

pH -5155.176 758.177 -6.799 5.86E-11 *** 

Root zone depth -17.086 3.895 -4.387 1.61E-05 *** 

Sand 252.306 50.447 5.001 9.80E-07 *** 

Clay 188.178 32.984 5.705 2.84E-08 *** 

Silt 189.089 47.992 3.94 0.000102 *** 

Fertilizer N 7.812 1.005 7.777 1.26E-13 *** 

Fertilizer P 11.155 1.987 5.613 4.59E-08 *** 

Fertilizer K -7.327 2.123 -3.451 0.000641 *** 
Dependent variable is Yield Observed, F (14,294) = 39.48, p = 0.00, Std_Error = standard error. 

Significance codes: ***0; **0.001. Residual standard error: 783.9 on 294 degrees of freedom. 

Table 4-5 shows that maize yield significantly increases (p < 0.05) with elevation, rainfall, organic 

nitrogen, phosphorus, sand, clay, silt, and nitrogen and phosphorus fertilizer. This reveals that 

maize yield response variability on-station is dependent on a variety of factors. For example, in 

Kenya highland maize was planted at three different altitudes and showed large yield differences, 

with yield decreasing with decreasing altitude (Cooper, 1979). Ovalles and Collins (1986) and 

Kravchenko and Robertson (2007) conducted studies on a broad selection of soil chemical and 

structural properties, including pH, organic C, total P, coarse sand, medium sand, fine sand, very 

fine sand, total sand, silt, clay, and soil water retention content from topographic positions. They 

demonstrated that all of these selected soil properties had a significant dependence on the 

topographic position of the field. Increasing organic carbon tends to reduce observed yield. The 

same phenomenon is also observed when pH increases. Table 4-6 shows the negative correlation 

between pH and Corg (organic carbon), as well as Norg (organic nitrogen). The increase in Corg, 

leading to a decrease in pH, could immobilize the phosphorus in the soil, reducing its 

bioavailability, resulting in a reduction in yield via indirect effect through the negative coefficient 

of Corg in Eq. 4-1. According to Hong et al. (2019) and Zhou et al. (2019), the pH values of the 

topsoil are low because the topsoil is rich in organic matter and decomposition of the organic 

matter results in the production of more organic acids. This biogeochemical process is more 

pronounced in acidic soils, such as those of Ghana. On the other hand, increased pH also reduces 

yield. The negative correlation between Corg and pH could also be explained by this fact. Indeed, 

soil pH increases the solubility of soil organic matter by increasing the dissociation of acidic 

functional groups (Andersson et al., 2000) and reduces the bonding between organic constituents 

and clays (Curtin et al., 1998). Thus, dissolved organic matter content increases with soil pH and, 

consequently, mineralizable C and N (Curtin et al., 1998). This explains the significant effects of 

alkaline soil pH conditions on the leaching of dissolved organic carbon and dissolved organic 

nitrogen, thereby reducing maize yield, in Eq. 4-1. The negative correlation between rainfall and 

Corg and Norg, as shown in Table 4-6, confirms this assumption. Thus, when Corg or pH harms 

the yield response to fertilizer when it increases implies more of an indirect negative effect due to 

interactions between climate and soil variables. However, we must recognize that this phenomenon 

is a bit confusing, and beyond the discussion given, other more elaborate research must be done to 

understand why such negative correlations appear between pH, Corg, and Norg, which reduce 

drastically yield. 
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Table 4-6. On-station matrix of correlation 

 Rain Tmax Corg Norg pH Sand Clay Silt YO 

Rain -     -    

Tmax -0.68* - -       

Corg -0.17* -0.2* -       

Norg -0.06 -0.52* 0.69* -      

pH 0 0.41* -0.52* -0.71* -     

Sand -0.22* 0.49* -0.46* -0.56* 0.66* -    

Clay -0.13* -0.3* 0.31* 0.64* -0.28* -0.39* -   

Silt 0.34* -0.31* 0.31* 0.16* -0.55* -0.83* -0.14* -  

YO 0.21* -0.28* -0.29* 0.15* -0.25* -0.1 0.2* -0.02 - 
* denotes significance; see Appendix G for the full matrix. 

Figure 4-5A, B, and C highlights the fact that temperature and rainfall have a significant effect on 

maize grain yield on-station. Those graphs are from MLR AIC+F (Table 4-5) of Eq. 4-1. Indeed, 

grain yield responses are positively affected by decreasing max and min temperature and by 

increasing rainfall amount. According to Barimah (2014), agricultural production in Ghana is 

expected to be negatively affected by the projected changes in rainfall regimes and increases in 

temperatures. The low level of total nitrogen observed (Table 3-3) indicates that this nutrient is a 

limiting factor for optimal maize production and that a response to nitrogen is expected (Danso et 

al., 2020). In Table 4-5, organic nitrogen is shown to have a significant positive effect on yield, 

and therefore its coefficient is very high, which balances the C:N ratio since the organic carbon 

coefficient is negative. A negative correlation between the root zone depth (Rzd) and silt (r = -3.2) 

could also explain why an increase in Rzd reduces maize yield (Table 4-5). The more the Rzd 

increases, the more the silt amount decreases and clay increases, which negatively affects maize 

yield response to fertilizer, knowing that soil particles such as silt are very important for soil texture 

quality (Adhinarayanan, 2017; Fang and Su, 2019; Scheiterle et al., 2019; Munialo et al., 2020). 

Table 4-4 shows that MLR 1 explained more yield variability on-farm than MLR 3 and 7. That 

means that on-farm environment variables (rainfall and temperature) have more influence than soil 

physical and chemical parameters since R² is 26% for MLR 1 and 16% and 18% for models with 

soil physical and chemical parameters as yield predictors. When elevation is added in MLR 1, 3, 

and 7, R² and Adj. R² do not increase significantly. This leads to the conclusion that the elevation 

covariate does not provide much of an explanation for the variability observed in the response of 

maize yield to fertilization when climate and soil physicochemical parameters are considered in a 

linear model. However, when elevation is added to the covariates (FN, FP, FK), it increases the R² 

of MLR 5, which considers only the fertilizers as an explanatory variable, from 29% to 34%. That 

is a 5% increase in explanation, which is not negligible in a field context where several variables 

interact. By comparing the R² of each set of covariates, the findings show that fertilizer application 

has the highest R² on observed yield compared with the other set of covariates. MLR 3 (R²=21%), 

which has soil physical parameters as covariates, explained more of the observed variability in 

yield than MLR 7 (R²=16%), which has soil chemical parameters as covariates. The difference in 

explanation of maize yield variability between MLR 7 (16%) and QUEFTS (13%) when only 

native soil fertility is considered as an explanatory variable is not significantly large, with only a 

3% discrepancy. On the other hand, there is a large difference (37%) between the R² of MLR 16 

and that of QUEFTS when fertilizer is added to soil chemical parameters as an explanatory 

variable. Also, the combination of soil physical and chemical variables in the MLR 11 model does 

not increase the R² much (25%) from the MLR 3 model (21%). This implies that soil chemical 

parameters do not contribute significantly to explain the variability in maize yield response to 

fertilizer, as highlighted by the QUEFTS model in Section 4.1. In contrast to the chemical soil 

parameters, fertilizer increases the R² considerably. The R² increases from 29% with MLR 5 to 
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41% with MLR 14 when fertilizer is combined with soil physical parameters and then to 46% with 

MLR 13 when combined with climatic parameters. Furthermore, fertilizer application contributes 

to reducing yield variability both on-farm and on-station, as presented in Figure 4-4B. From T0 via 

HHH, the coefficient of variation is seen to gradually decrease depending on whether a certain 

amount of nutrients is supplied or not. The CV decreases from 83% in the control (T0) to an average 

of 43% when fertilizer is applied, then stabilizes. With an R² ranging from 16%, 21%, and 26% to 

40%, 41%, and 46% when fertilizer is applied in combination with soil chemical properties, soil 

physical properties, and climatic variables, respectively, fertilizer application could be a proxy for 

maize yield increase in Ghana. However, despite fertilizer’s importance ahead of all other 

covariates, high variability is observed in yield response to it, as confirmed by Bua et al. (2020), 

Bationo et al. (2018), and other scholarly researchers (Fosu-Mensah et al., 2012; MacCarthy et al., 

2017; van Loon et al., 2019). The combination of chemical and physical soil covariates with 

fertilizer (MLR 17) explained more yield response variation since there is a high Adj. R² of 

49-51%. MLR 14 with soil physical parameters and fertilizer as covariates expresses the role of 

soil texture and structure in fertilizer application and nutrient use efficiency. This result is 

highlighted by Zheng et al. (2003) and Martins et al. (2018), who stress the importance of 

considering soil texture when applying commercial fertilizers. MLR 18 considers all covariates, 

and its Adj. R² is 51%. Indeed, the combination of all those predictors helped explain 51% of yield 

response to fertilizer variability on the farm in Ghana. 

The AIC algorithm was performed to compare two MLR models, one simulated with all covariates 

including fertilizer (AIC+F) and one simulated with all covariates except fertilizer (AIC-F). These 

simulations allow us to once again highlight the positive effect of fertilizer on maize yield. Without 

Figure 4-5. Scatter plot of observed yield and MLR-predicted yield as a function of 

(A) Tmax, (B) Tmin, (C) Rain, and (D) pH for on-station trials 
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fertilizer in the set of independent variables, the best model from the dozens of scenarios produced 

by the AIC algorithm explained 31% of the variability in yield response to fertilizer, while the 

final model from the scenarios produced by the AIC algorithm including fertilizer as a covariate 

in the set of all independent variables explained 50% of the yield response variability on-farm. 

Between MLR 18 and MLR AIC+F, there is not a huge difference of variability explanation 

considering R² and Adj. R². However, in-depth there is a difference in covariate use to explain 

variability. All covariates in MLR AIC+F are statistically significant (p < 0.05), which is not the 

case with MLR 18. Therefore, MLR AIC+F offers the most reliable way to predict yield and draw 

yield response variability on-farm. Eq. 4-1 from MLR AIC+F is used to estimate yield and perform 

the comparison between observed yield and predicted yield. Table 4-7 presents Eq. 4-1 

coefficients. 

 YO = f(Tmin +  Tmax +  pH +  Rwhc +  Sand +  Silt +  FN +   FP)  +  ε (4-2) 
 

Table 4-7. On-farm best multiple regression model structure (MLR-AIC) 
 

Estimate Std_Error t.value Pr(>|t|) 
 

(Intercept) 19,628.76 1553.336 12.637 < 2e-16 *** 

Tmin -250.883 71.772 -3.496 0.000497 *** 

Tmax -346.267 61.232 -5.655 2.11E-08 *** 

pH 735.945 232.106 3.171 0.001573 ** 

Rwhc -246.883 34.008 -7.26 8.54E-13 *** 

Sand -39.691 9.832 -4.037 5.89E-05 *** 

Silt -46.362 9.394 -4.935 9.57E-07 *** 

FN 15.327 1.436 10.672 < 2e-16 *** 

FP 7.3 2.747 2.657 0.008016 ** 
Dependent variable is yield observed, F (14,294) = 39.48, p = 0.00, Std_Error = standard error. 

Significance codes: ***0 and **0.001; Residual standard error: 783.9 on 294 degrees of freedom. 
 

 

In on-station trials, minimum and maximum temperature affect maize yield negatively (Table 4-7). 

Peprah (2012) conducted a study on rainfall and temperature correlation with maize yield in Ghana 

and concluded that temperature explains a larger portion of the maize yield variation than rainfall. 

This finding is also echoed in our data, as discussed previously. Figure 4-6 reveals that rainfall and 

temperature are also important factors in explaining the variability in the response of maize to 

fertilizer. Indeed, Figure 4-6A and B shows a negative correlation between temperature and yield. 

As the minimum and maximum temperatures increase, the yield tends to decrease despite the 

application of fertilizer. Lobell et al. (2008) indicated that each day with a temperature above 30°C 

would reduce the final yield by 1% under optimal rainfed conditions and by 1.7% under drought 

conditions. According to EPA (2000), even though other contributing factors exist, rising 

temperature and irregularity in precipitation are the major causes of the continuous reduction in 

maize yields. This confirms the finding depicted in Figure 4-6A and B, showing that the current 

temperature levels and evaporation rates in Ghana are high, particularly in the Guinea Savannah, 

Sudan Savannah, and Coastal Savannah zones, according to a study conducted by Ahene (2003) 

on the impact of climate change on maize production in Ghana between 1970 and 2002. Since 

agriculture in Ghana is rainfed, a scarcity of rainfall will harm the crop, but as Figure 4-7C shows, 

increasing rainfall tends to reduce the yield. This could be explained by Figure 4-7D, which 

highlights the fact that where rainfall is high, depth of soil is low (less than 100 cm); as shown in 

Table 4-8 of the correlation matrix, the coefficient of correlation between root zone depth and 

rainfall is negative (-0.14). The shallow depth increases the runoff of rainwater, which is then not 

available for maize. This runoff also causes leaching of fertilizer and soil nutrients, thus reducing 
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the chemical and physical fertility of soils and could deteriorate surface water quality. The amount 

of moisture in the soil depends upon how much rainfall enters the soil and is stored (Shaxson and 

Barber, 2003). Under rainfed agriculture as in Ghana, the amount of water entering the soil depends 

on what percentage is diverted above the surface as runoff (Shaxson and Barber, 2003) as well as 

the soil’s capacity to store water. Several scholars have highlighted the importance of soil depth 

in increasing yield in SSA (O’Halloran et al., 1985; Sadras and Calvino, 2001; Hengl et al., 2017; 

Leenaars et al., 2018a). According to Guilpart et al. (2017), SSA could become a grain breadbasket 

if rootable soil depths are comparable to those of other major breadbaskets, such as the U.S. Maize 

Belt and South American Pampas. In addition, the potential for SSA to become another major 

breadbasket is suggested by the fact that most of the existing SSA cereal cropland (where nearly 

all grain is produced under rainfed rather than irrigated conditions) receives abundant precipitation 

(≥900 mm per year), equal to or greater than all existing breadbaskets except for the humid tropical 

lowland rice areas in Asia. 

Figure 4-6. Scatter plot of observed yield and MLR-predicted yield as a function of (A) Tmax, (B) Tmin, 

(C) rain and (D) Rzd for on-farm trials 



 

37 

Table 4-8. On-farm matrix of correlation 

 Elev Rain Tmin Tmax pH Rzd Rwhc Sand Silt YO 

Elev -          

Rain -0.16* -         

Tmin -0.68* 0.25* -        

Tmax -0.54* 0.25* 0.83* -       

pH -0.19* 0.12* 0.33* 0.52* -      

Rzd 0.51* -0.14* -0.56* -0.46* -0.34* -     

Rwhc -0.16* 0.35* 0.09* 0.13* 0.2* -0.18* -    

Sand 0.19* -0.1* -0.34* -0.24* -0.08* 0.33* -0.22* -   

Silt -0.38* 0.08* 0.46* 0.46* 0.21* -0.35* 0.23* -0.81* -  

YO 0.33* -0.22* -0.45* -0.49* -0.24* 0.27* -0.25* 0.19* -0.35* - 
* denotes significance. See Appendix 0 for the full matrix. 

The main constraints to maize production in Ghana are drought during the critical early stages of 

crop growth, low soil nutrient levels (especially nitrogen and phosphorus), low soil pH, pests and 

diseases, and Striga (Striga hermonthica) infestations. Striga hermonthica, known as witchweed, 

is a parasitic weed that is a serious problem in many parts of the Guinea and Sudan Savannah 

zones of Ghana (Albert and Runge-Metzger, 1995; Sauerborn et al., 2003; Adu et al., 2014). 

However, it has been neglected according to Albert and Runge-Metzger (1995) and Scheiterle et 

al. (2019). Scheiterle et al. (2019) conducted a study using several covariates, such as soil 

properties, Striga hermonthica, and plot management, through three statistical models, which 

showed that the parasitic weed Striga hermonthica had a significant negative effect on maize yield 

in the Guinea Savannah zone of Ghana. In southwestern Kenya, a statistical analysis of the 

influence of Striga hermonthica on maize yields in fertilizer trials revealed that when the Striga is 

included in regression analysis, the percentage yield variation explained moves up to 55% and 

65% (Smaling et al., 1991). Thus, Bua et al. (2020) reported that yield losses due to Striga 

hermonthica could be as high as 100%, depending on many factors. The major pests of maize in 

Ghana include stem borers, cutworms, grasshoppers, weevils, termites, and the larger grain borer, 

which have caused many troubles for maize yield response to fertilizer (Adu et al., 2014; Darfour 

and Rosentrater, 2016b). For example, research has shown that the estimated national mean loss 

of maize in Ghana is 45% (range 22-67%) due to damage done to the foliage by the younger larvae 

and consumption of the cob and kernels by the larger larvae that inhabit the whorls of older plants 

(Bhusal et al., 2020). Other limitations to maize production include poor management practices, 

such as low plant populations, inappropriate planting time, inadequate control of weeds, limited 

use of inputs (especially fertilizer and improved seeds) likely due to a lack of credit, and untimely 

application of adequate quantities of fertilizers (Adu et al., 2014; Darfour and Rosentrater, 2016b). 

In this study, variability of maize yield response to fertilizer was assessed using biophysical 

variables and, at a certain level, they explain the variability observed; however, factors other than 

those cited also contribute largely to maize yield response variability, mostly on-farm. 
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4.3 Spatial Variability Assessment 

4.3.1 Geostatistical Analysis 

According to Tobler (1970), “Everything is related to everything else, but things that are close are 

more related than things that are far away.” This law is the basis for the fundamental concepts of 

spatial dependence and spatial autocorrelation. In our context, this means that the value of maize 

yield observed at location “s” is more due to the actions and interaction of the covariates that are 

close to it and in which the trials are conducted. Here, the quantification of the spatial structure of 

the observed yields in on-farm and on-station trials gave a low positive degree of global spatial 

autocorrelation: on-farm, Im = 0.42, and on-station, Im = 0.44 (Figure 4-7 and Figure 4-8). To assess 

the significance of Moran’s I’s, we compared the observed Moran’s I’s with thousands (9999) of 

Moran’s I’s calculated using algorithms involving generating random permutations, i.e., random 

ordering of the numbers 1, 2, . . . , n, for some fixed “n” of the values among all other possible 

locations (Joost et al., 2017).  

 

More precisely, we use stochastic computer simulation, often called Monte Carlo simulation, 

which includes some randomness in the underlying model rather than deterministic computer 

simulation (Rubinstein and Kroese, 2016). Figure 4-9A and B show pseudo-p-values that are less 

than 0.001. In addition, on the histograms, around the yield mean (white bar) the observed yield 

values from farms and stations do not resemble the average yields of their neighbors, and Im values 

(green bar), both on-farm and on-station, are different from the rest of the distribution. 

Consequently, in this study, it can be concluded that the maize yield variables analyzed are 

significantly spatially autocorrelated and the risk of rejecting the null hypothesis (H0) is low. 

However, the values of Im not being more than 0.5 could be the result of some spatial gaps that 

existed in the dataset (Bua et al., 2020). 

Figure 4-7. Moran’s I scatter plot of 

on-farm trials 

Figure 4-8. Moran’s I scatter plot of 

on-station trials 
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To predict the grain yields for all the unknown locations over the entire study area grid, the spatial 

structure in the data points of the grain yield on-farm and on-station were evaluated through their 

semivariograms (Eq. 3-17). Figure 4-10A shows the semivariograms for observed yield from 

on-station trials. As shown, the range of spatial dependence has a low and weak variation, 49 km. 

The semivariogram has 115 nuggets. Spatial continuity between neighboring points and the low 

range of spatial dependence indicates that this continuity disappears very fast. The semivariogram 

of the on-station yield trials is different from the on-farm yield trials. That of the on-farm trials 

shows a pure nugget effect. 

 

This could be explained by the fact that the factors affecting the variability of yield are not the 

same. The exhibited spatial autocorrelation through Im analysis seems to be in contradiction with 

the variogram of Figure 4-10B. Bua et al. (2020) stated that the various sources of secondary data 

points could explain the nugget effect observed, and this effect might be misleading. In Figure 

4-12 and Figure 4-13, a significant difference between NPK nutrient-containing soil spatial 

variation and NPK fertilizer applied semivariograms can be seen. Among the three nutrients, on-

farm soil organic nitrogen contain has the highest range (145 km), compared with 72 km for on-

station soil organic nitrogen-containing semivariograms. P- and K-containing soil semivariograms 

on-farm and on-station have a low range. 

Figure 4-9. Histogram of permutation and p-value of observed yield and yield of neighbors 

on-farm (left) and on-station (right) 

Figure 4-10. Variogram of observed yield (A) on-station and (B) on-farm 
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The semivariogram for soil NPK content shows almost zero nugget effect value. The zero nugget 

effect value indicates a very smooth spatial continuity between neighboring points. However, this 

smooth spatial continuity must make the application of fertilizers site-specific. In Figure 4-12 and 

Figure 4-13, semivariograms of NPK fertilizer application show the pure nugget effect. This means 

that fertilizer application, whether on-farm or on-station, is not applied as a function of soil NPK 

content dynamic. Remembering that the semivariogram is a result of the mean squared differences 

between the neighboring values (Vieira and Gonzalez, 2003), Figure 4-12 and Figure 4-13 show 

that values are not close and are not similar. The pure nugget effect observed in the NPK fertilizer 

spatial application again emphasizes the importance of the role of soil testing before fertilizer 

recommendation. The similarity between the soil exchangeable potassium and the potassium 

fertilizer application variograms could reveal that potassium is not a very limited nutrient in maize 

production in Ghana. Thus, there is a need for more research to verify these results.  

 

Figure 4-11. Comparison of soil NPK and NPK fertilizer application semivariograms on-station 
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4.3.2 Maize Yield Prediction Maps 

The maps in Figure 4-13 are derived from several advanced statistical methods. They show a 

spatial response of the predicted yield distribution of maize to environmental conditions, 

physicochemical soil properties, and fertilizers. The more yellow the map, the higher the yield and 

the more the response to the covariates is positive, i.e., that it contributes to the increase in maize 

yield. However, the darker the blue, the lower the predicted return and the more the direct and 

indirect effects of the covariates tend to reduce the return and increase the yield gap. 

RFsp seems to smooth the spatial pattern, which is possibly the result of averaging the trees in the 

random forest (Hengl et al., 2018). The on-farm DYPM shows a generally high yield in the 

southeast and southwest. The expected yields in the regions of these agroecological zones varies 

between 2,500 and 5,000 kg/ha. The expected yield starts to become low in Bono, in the northern 

and eastern regions, where it reaches more than 2,500 kg/ha. On-farm DYPMs from RF and MLR-

AIC models are very similar. That of QUEFTS shows a slightly different distribution in staining; 

nevertheless, it predicts the yields following the same concentration gradient. Table 4-9 shows 

that, among the models from which on-farm DYPMs are derived, the MLR-AIC-RFsp map is the 

most accurate based on R². The large discrepancy between the R² of the RF-RFsp map, MLR-AIC-

RFsp maps, and QUEFTS-RFsp map is due to the number of covariates used in the model. On-

station, RFsp predicted yield up to 4,000 kg/ha in the two situations. The gradient of coloration 

starts from red-yellow-dark pink, which is more pronounced in the southwestern and southeastern 

part of the country, and becomes bluer going up to the north of the country (Guinea Savannah, 

Sudan Savannah), similar to the on-farm DYPM. This perfectly reflects what happens in reality in 

a general manner in Ghana. The increase of maize yield follows the rainfall pattern, even if in this 

study MLR-AIC showed that there is an inverse correlation between rainfall and observed yield; 

nevertheless, it remains an important factor in the variability of the response of maize. Other 

Figure 4-12. Comparisons of soil NPK and NPK fertilizer application semivariograms on-farm 
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studies have underscored the importance of rainfall variability for yield stability (MacCarthy et al., 

2017; Kyei-Mensah et al., 2019). Müller et al. (2011) reported that rainfall variability was the main 

cause of yield variability in SSA. These prediction maps created using biophysical variables show 

that there is still room to increase maize yields if fertilizer application rates are increased and 

adapted to the AEZ environmental conditions. 

Table 4-9. Accuracy of DYPMs 

Model 
On-Farm On-Station 

RMSE R² RMSE R² 

QUEFTS-RFsp 821 22% 904 47% 

MLR-AIC-RFsp 637 58% 562 72% 

Table 4-9 shows that, on-station, the MLR-AIC-RFsp map is more accurate than QUEFTS-RFsp 

maps based on the R² and RMSE indicators. The MLR-AIC-RFsp map represents 72% of the 

variability in maize yield. This suggests that this map is the most accurate and closest to reality. 

  
Figure 4-13. On-station and on-farm maize yield prediction maps 
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 CONCLUSIONS AND RECOMMENDATIONS 

A total of 1,198 data points from old and peer-reviewed publications were used to assess and 

conduct a spatial analysis of the variability of maize yield responses to fertilizer application in 

Ghana in various regions, including Ashanti, East, North, Upper West, Upper East, and North East. 

The evaluation of the variability of maize yield was carried out using QUEFTS models based 

partly on empirical relations and partly on theoretical relations, complemented with Multiple 

Linear Regression. Spatial analysis was carried out through the calculation of the Moran’s index 

and the construction of semivariograms from the observed maize yields; nitrogen, phosphorus, and 

potassium from the soil; and NPK fertilizers applied. This resulted in the creation of a predicted-

yield map using the random forest for spatial prediction framework (RFsp), in which model-

predicted yield point buffer distances are used as explanatory variables, thus incorporating 

geographic proximity effects into the map prediction process. The fitted measures and the 

coefficient of determination, as well as the mean root square error, were used to justify the level 

of explanation of yield variability by the prediction models. 

The study shows that the QUEFTS soil fertility model was insufficient to explain on-station and 

on-farm trial yields. Thus, soil fertility was not the only limiting factor for maize production in 

Ghanaian AEZs. Other factors, identified through advanced statistical regression analysis and 

random forest algorithm, included root zone depth, water-holding capacity, rainfall, temperature, 

elevation, and soil texture and structure, which are as important as soil nutrients and fertilizer 

applied. 

Multiple Linear Regression enhanced by Akaike Information Criterion led to the design of 13 

models for on-station trials and 13 models for on-farm trials. MLR taking into account weather 

variables and soil physical and chemical properties explained over 50% of the variation for both 

the on-station and on-farm trials, with the AIC algorithm identifying the significant variables. 

Generally, the situation may improve with increasing pH. On-station trial pH values are not bad 

(around 6); however, the strong negative coefficient will need to be explored, especially since the 

pH range in the data may be narrow. The results show that observed yield variability with 

fertilization is explained by this comprehensive set of variables. These results suggest that attention 

should also be focused on factors such as temperature and root zone depth. Soil chemical properties 

alone explain observed yields poorly, using both QUEFTS and MLR. It can be inferred that climate 

change may heavily impact maize yield and variability. 

Fertilizer use has a strongly significant effect on observed yield, and increased fertilizer rates tend 

to stabilize yield variation. Consequently, the Government of Ghana should pursue the campaign 

for fertilizer application on-field by farmers. However, blanket fertilizer application may no longer 

be the most effective fertilization strategy in Ghana, as revealed by spatial analysis variograms. 

Fertilizer formulations and rate of application should be at least AEZ specific because of climate 

and soil physical and chemical properties. Therefore, a soil-crop simulation model that takes the 

major factors influencing crop production into account, such as solar radiation, planting density, 

and soil nutrient and water dynamics, would be more appropriate for simulating yields in the study 

area and enhancing understanding of spatial-temporal variability of crop yields. 

Spatial analysis showed significant spatial variability in yield within AEZs, offering the possibility 

of managing yield variability through modulation of applied fertilizer rates by considering the 

direct and indirect positive or negative effects that covariables identified in this study may have 

on physiological efficiency. On-station DYPM from MLR more accurately predicted the 

variability in maize yield. DYPM from MLR was the most realistic and could be used to predict 
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maize yield. In two cases, the maps from the models showed a lot of similarity in the representation 

of the yield gradient of maize, which is higher in the AEZs of the west and south than in those of 

the center and north. For successful adoption of fertilizers by farmers, research institutions, the 

private sector, non-governmental organizations, and the Government of Ghana, specific 

recommendations must not only be based on soil tests but also must take into consideration DYPM. 

DYPM and Digital Soil Prediction Mapping are complementary decision-driven tools for farm 

management. Studying the variability of the yield response in Ghana can help farmers tailor 

fertilizer management by taking into account the direct and indirect effects of covariables on yield. 

The applied methodology in this study demonstrates the potential to estimate yield with increasing 

accuracy for identification of location-specific fertilizer recommendations based on climatic 

characteristics and soil chemical and physical conditions. The converging results in the spatial 

maps using the different methods justifies the logic of the methods, and their results correspond to 

the reality of the field. However, an optimization method should be able to improve this and help 

in understanding all the inverse correlations in on-station trials, which undoubtedly hide what is 

hampering yield increasing in Ghana. In addition, the temporal and spatial logistical operations for 

fertilizer distribution, as well as the timely delivery of the right fertilizer, are key elements in 

increasing farm yields and incomes, even if all the covariates that were found to be important in 

this study are well managed. 
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APPENDIX 

Appendix A. Chemical composition of the soil organic amendments used in the experiments 

Organic 

Amendment 
pH 

% 

Organic 

Carbon 

% N 
P 

(mg/kg) 

K 

(mg/kg) 

Ca 

(mg/kg) 

Mg 

(mg/kg) 

Cow dung 9.25 37.83 1.92 3,610 18,750 17,085 24,502 

Goat dropping 9.13 21.06 1.74 2,790 18,750 21,292 24,502 

Sheep dropping 9.8 22.23 2.03 4,043 31,750 16,342 38,100 

Poultry dropping 7.17 24.18 2.86 13,630 16,250 141,850 38,625 

Compost 7.22 17.94 1.26 2,977 7,000 4,605 7,822 

Town waste 9.82 2.34 0.32 1,552 9,250 42,650 21,035 

Fertisol 8 14.04 1.97 12,795 18,000 83,475 35,575 

 

Appendix B. Nutrient contents of the plant residues used as green manure 

Plant 

Material 
N P K Ca Mg C C/N Lignin Polyphenol 

 mg/g  % 

C. odorata 24.6 4.2 25.6 32.1 23.3 336.4 14.89 10.78 1.62 

C. juncea 10.7 3.8 13.8 27.4 24.2 434.7 40.8 12.44 0.73 

P. maximum 24.9 3.3 26.1 26 20.2 452.5 18.17 13.24 1.48 

 

Appendix C. Chemical composition of biochar used in the experiment 

Nutrient N P K Ca Mg C C/N CEC 
 g/kg  cmol/kg 

Value 7.3 (0.1) 0.05 (0.0) 3.6 (0.2) 4.6 (0.1) 0.4 (0.1) 890.7 (3.2) 122 (0.3) 10.9 (0.2) 

 

Appendix D. QUEFTS sensitivity analysis DOI Pareto plot 

  



 

57 

Appendix E. QUEFTS sensitivity analysis DOI contour plot 

 

Appendix F. Full matrix of correlation for on-farm trial 

 

Appendix G. Full matrix of correlation for on-station trial 

 

Elev Rain Tmin Tmax Corg Norg Pt POlsen Ex.K pH CEC Rzd Rwhc Sand Clay Silt YO

Elev - -0.16* -0.68* -0.54* 0.5* 0.53* -0.03 0.23* -0.12* -0.19* 0 0.51* -0.16* 0.19* 0.37* -0.38* 0.33*

Rain -0.16* - 0.25* 0.25* -0.11* -0.1* 0.04 -0.21* -0.11* 0.12* -0.12* -0.14* 0.35* -0.1* 0.09* 0.08* -0.22*

Tmin -0.68* 0.25* - 0.83* -0.29* -0.48* -0.08* -0.08* -0.24* 0.33* -0.25* -0.56* 0.09* -0.34* -0.14* 0.46* -0.45*

Tmax -0.54* 0.25* 0.83* - -0.49* -0.66* -0.11* -0.31* -0.3* 0.52* -0.28* -0.46* 0.13* -0.24* -0.21* 0.46* -0.49*

Corg 0.5* -0.11* -0.29* -0.49* - 0.73* 0.33* 0.72* -0.09* -0.3* -0.02 0.04 -0.26* -0.11* 0.52* -0.28* 0.32*

Norg 0.53* -0.1* -0.48* -0.66* 0.73* - 0.32* 0.43* 0.14* -0.61* 0.09* 0.27* -0.17* 0.07* 0.42* -0.47* 0.35*

Pt -0.03 0.04 -0.08* -0.11* 0.33* 0.32* - 0.15* 0.29* 0.1* 0.05 -0.18* 0.21* -0.29* 0.27* 0.01 0.01

POlsen 0.23* -0.21* -0.08* -0.31* 0.72* 0.43* 0.15* - 0.01 -0.18* -0.03 -0.09* -0.25* 0.02 0.21* -0.24* 0.23*

Ex.K -0.12* -0.11* -0.24* -0.3* -0.09* 0.14* 0.29* 0.01 - -0.16* 0.2* 0.11* 0.35* 0.06 -0.08* -0.1* 0.09*

pH -0.19* 0.12* 0.33* 0.52* -0.3* -0.61* 0.1* -0.18* -0.16* - -0.15* -0.34* 0.2* -0.08* -0.22* 0.21* -0.24*

CEC 0 -0.12* -0.25* -0.28* -0.02 0.09* 0.05 -0.03 0.2* -0.15* - 0.23* 0.14* 0.24* -0.05 -0.15* 0.05

Rzd 0.51* -0.14* -0.56* -0.46* 0.04 0.27* -0.18* -0.09* 0.11* -0.34* 0.23* - -0.18* 0.33* 0.12* -0.35* 0.27*

Rwhc -0.16* 0.35* 0.09* 0.13* -0.26* -0.17* 0.21* -0.25* 0.35* 0.2* 0.14* -0.18* - -0.22* 0.03 0.23* -0.25*

Sand 0.19* -0.1* -0.34* -0.24* -0.11* 0.07* -0.29* 0.02 0.06 -0.08* 0.24* 0.33* -0.22* - -0.34* -0.81* 0.19*

Clay 0.37* 0.09* -0.14* -0.21* 0.52* 0.42* 0.27* 0.21* -0.08* -0.22* -0.05 0.12* 0.03 -0.34* - 0 0.08*

Silt -0.38* 0.08* 0.46* 0.46* -0.28* -0.47* 0.01 -0.24* -0.1* 0.21* -0.15* -0.35* 0.23* -0.81* 0 - -0.35*

YO 0.33* -0.22* -0.45* -0.49* 0.32* 0.35* 0.01 0.23* 0.09* -0.24* 0.05 0.27* -0.25* 0.19* 0.08* -0.35* - 

Elev Rain tmin tmax Corg Norg Pt POlsen Ex.K pH CEC Rzd Rwhc Sand Clay Silt YO

Elev - -0.04 -0.57* -0.48* 0.26* 0.65* 0.25* 0.46* 0.4* -0.11* 0.2* 0.6* 0.11 -0.08 0.59* -0.37* 0.12*

Rain -0.04 - -0.72* -0.68* -0.17* -0.06 -0.18* -0.08 -0.02 0 -0.03 0.38* 0.39* -0.22* -0.13* 0.34* 0.21*

tmin -0.57* -0.72* - 0.9* 0.01 -0.3* -0.06 -0.29* -0.2* 0.13* -0.07 -0.71* -0.29* 0.26* -0.22* -0.11* -0.24*

tmax -0.48* -0.68* 0.9* - -0.2* -0.52* -0.23* -0.44* -0.23* 0.41* -0.12* -0.61* -0.35* 0.49* -0.3* -0.31* -0.28*

Corg 0.26* -0.17* 0.01 -0.2* - 0.69* 0.09 0.52* -0.08 -0.52* 0.67* -0.24* -0.17* -0.46* 0.31* 0.31* -0.29*

Norg 0.65* -0.06 -0.3* -0.52* 0.69* - 0.4* 0.59* 0.28* -0.71* 0.44* 0.29* 0.09 -0.56* 0.64* 0.16* 0.15*

Pt 0.25* -0.18* -0.06 -0.23* 0.09 0.4* - 0.62* 0.54* -0.36* 0.05 0.47* 0.38* 0.06 0.13* -0.24* 0.29*

POlsen 0.46* -0.08 -0.29* -0.44* 0.52* 0.59* 0.62* - 0.29* -0.35* 0.22* 0.36* 0.33* -0.33* 0.34* 0.05 0.09

Ex.K 0.4* -0.02 -0.2* -0.23* -0.08 0.28* 0.54* 0.29* - -0.12* -0.03 0.48* 0.41* 0.14* -0.14* -0.23* 0.16*

pH -0.11* 0 0.13* 0.41* -0.52* -0.71* -0.36* -0.35* -0.12* - -0.5* -0.12* 0.04 0.66* -0.28* -0.55* -0.25*

CEC 0.2* -0.03 -0.07 -0.12* 0.67* 0.44* 0.05 0.22* -0.03 -0.5* - -0.01 -0.38* -0.29* 0.13* 0.25* -0.18*

Rzd 0.6* 0.38* -0.71* -0.61* -0.24* 0.29* 0.47* 0.36* 0.48* -0.12* -0.01 - 0.43* 0.08 0.29* -0.32* 0.44*

Rwhc 0.11 0.39* -0.29* -0.35* -0.17* 0.09 0.38* 0.33* 0.41* 0.04 -0.38* 0.43* - 0.02 0.06 -0.08 0.34*

Sand -0.08 -0.22* 0.26* 0.49* -0.46* -0.56* 0.06 -0.33* 0.14* 0.66* -0.29* 0.08 0.02 - -0.39* -0.83* -0.1

Clay 0.59* -0.13* -0.22* -0.3* 0.31* 0.64* 0.13* 0.34* -0.14* -0.28* 0.13* 0.29* 0.06 -0.39* - -0.14* 0.2*

Silt -0.37* 0.34* -0.11* -0.31* 0.31* 0.16* -0.24* 0.05 -0.23* -0.55* 0.25* -0.32* -0.08 -0.83* -0.14* - -0.02

YO 0.12* 0.21* -0.24* -0.28* -0.29* 0.15* 0.29* 0.09 0.16* -0.25* -0.18* 0.44* 0.34* -0.1 0.2* -0.02 - 
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Appendix H. Random forest map 

 

Appendix I. Variable importance effect on maize yield observed (Left: A = on-station; Right = on-farm) 
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FERARI is an international public-private partnership that builds science-based approaches to site-

specific fertilization for widespread adoption by farmers in Ghana for improved food and nutrition 

security. This calls for a transformation of the fertilizer and food systems that must be driven by 

evidence-based agro-technical perspectives embedded in multi-stakeholder processes. 

 

To support this transformation, the following institutions have partnered to implement the 

Fertilizer Research and Responsible Implementation (FERARI) program: 

• International Fertilizer Development Centre (IFDC) 

• Mohammed VI Polytechnic University (UM6P) 

• OCP Group 

• Wageningen University and Research (WUR) 

• University of Liège (ULiège) 

• University of Ghana (UG) 

• University for Development Studies (UDS) 

• Kwame Nkrumah University of Science and Technology in Kumasi (KNUST) 

• University of Cape Coast (UCC) 

• University of Energy and Natural Resources (UENR) 

• Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development 

(AAMUSTED) College of Agriculture Education 

• Council for Scientific and Industrial Research in Kumasi (CSIR-SRI) and in Tamale 

(CSIR-SARI) and its subsidiary (CSIR-SARI-Wa) 

 

FERARI operates in conjunction with the Planting for Food and Jobs program of the Government 

of Ghana (GoG) to embed development efforts into national policy priorities to reach impact at 

scale. It trains five Ph.D. and two post-doctoral candidates and dozens of master’s-level students 

in building the evidence base for its interventions. 

 

FERARI conducts hundreds of fertilizer response trials on maize, rice, and soybean, on-station 

and with farmers, and demonstrates them to farmer groups in the northern and middle belt of 

Ghana. It conducts surveys among farmers and actors in the value chain to understand the drivers 

for use of fertilizers and other inputs and the marketing of the produce to enhance farm productivity 

and income. It helps the GoG to establish a Fertilizer Platform Ghana, and is developing its soil 

mapping expertise toward an information platform.  

 

The content of this report is the sole responsibility of the authors of the involved institutions 

portrayed on the front page. 

 

 



 

 

 

 

 


