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SUMMARY  
Maize holds a significant position within Ghana’s cereal production, contributing to 45% of the 
total cereal production. Despite this, the average maize yield of 2.4 metric tons per hectare (mt ha-1) 
between 2017 and 2019 falls well below its potential range of 5-6 mt ha-1. To comprehensively 
grasp the dynamics of the maize yield gap in Ghana, we employed the light use efficiency 
(LINTUL-2) crop model alongside statistical and geospatial analyses. This allowed us to assess 
the variability of maize water-limited potential yield and yield gap across 10 designated study sites, 
extending our evaluation to a national scale. Utilizing random forest regression, followed by ridge 
regression, we endeavored to uncover the principal drivers behind maize yield gap in Ghana.  

Our findings reveal a water-limited yield gap ranging from 18% to 74% across the 10 study sites 
and diverse fertilizer treatments. The combined approach of random forest and ridge regression, 
explaining 87% of the yield gap variability (RMSE = 472.6 kg ha-1), highlights noteworthy trends. 
Notably, at a 5% confidence level, soil organic matter, soil carbon content, base saturation, and 
soil nitrogen content emerge as the most influential factors, explaining 13.81%, 13.80%, 11.56% 
and 10.25% of the maize yield gap variability under water limited conditions, respectively. The 
Ridge Regression underscores the significance of soil organic matter, base saturation, soil nitrogen 
content, nitrogen application, phosphorus application, potassium application, and sulfur 
application for reducing the maize yield gap. Our research also emphasis the potential of sulfur 
application as a secondary nutrient to effectively decrease the maize yield gap, particularly when 
integrated with macronutrients (NPK) and the kriging interpolation reveals high potential for 
maize production in the northern part of the country.  
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CHAPTER 1: INTRODUCTION 

 Background 
Agriculture plays a crucial role in global food security and economic development, particularly in 
Africa where it serves as a source of employment and income for a large portion of the rural 
population. According to Oxford Business Group (2021), Oxford Business Group agriculture 
constitutes the majority of the active workforce in Africa and represents around 15% of sub-
Saharan African (SSA) gross domestic product (GDP). It is also vital for global economic growth, 
providing raw materials for various industries and contributing to poverty reduction (De Janvry 
and Sadoulet, 2010). Maize (Zea mays L.) is a pivotal cereal crop in SSA and contributes 
significantly to ensuring food security and nutrition in the region, making it an indispensable crop 
(Shah et al., 2016). In 2019, the Food and Agriculture Organization of the United Nations (FAO) 
reported that West Africa’s global maize production reached 26 million metric tons (mt), 
accounting for roughly 37% of its overall cereal production (FAOSTAT, 2021). 

In Ghana, maize cultivation is very useful (GSS, 2018), and according to the African Development 
Bank (AfBD), maize is the most important cereal crop in the country, accounting for 
approximately 45% of total cereal production (MoFA, 2020). Furthermore, maize is a key crop for 
food security in Ghana, as it is grown by small farmers and used for food consumption and 
livestock and poultry feed (Andam et al., 2017; MiDA, 2010; MoFA, 2010). Given the importance 
of maize in the Ghanaian diet, the government has taken various measures to improve the yield 
per hectare (ha). These measures include the establishment of programs such as Planting for Food 
and Jobs (PFJ), launched in 2017, which aims to boost agricultural production, create jobs in the 
agricultural sector, and improve the country’s food security by subsidizing agricultural inputs 
(certified seeds, fertilizer subsidy, extension service delivery) and output markets for farmers 
(Mabe et al., 2018; MoFA, 2019b). Between 2017 and 2019, the initiative led to an average 
improvement of approximately 40% in maize yield reaching an average of 2.4 mt ha-1 compared 
to the period of 2013 to 2016, when the national average was 1.73 mt ha-1, as reported by the 
Ministry of Food and Agriculture (MoFA) in 2020 and FAOSAT in 2021. However, despite these 
coordinated actions and an improvement in total maize production, the current yield is still far 
from the attainable yield (5-6 mt ha-1) (IFPRI, 2014; Scheiterle and Birner, 2018), thus maintaining 
the gap in maize production (Adzawla et al., 2021).  

In their study on the yield response of maize to fertilizer in Ghana, Bua et al. (2020) revealed that 
yields vary greatly between and within agroecological zones (AEZs), and yield ranges from 2 to 
10 mt ha-1. It is evident that the increase in maize yield cannot be attributed solely to normal 
application rates of fertilizers, as other factors also play an important role (Bua et al., 2020; A.K. 
Kouame et al., 2023; K.K.A. Kouame et al., 2021). These additional factors include root zone 
depth, soil properties, weather, and elevation, as reported by A.K. Kouame et al. (2023). 
Furthermore, maize growing in Ghana is essentially rainfed, and small-scale farmers use 
traditional agricultural techniques to produce their crops (SRID/MoFA, 2017; World Bank, 2017; 
Worqlul et al., 2019). In addition, within the different AEZs, there is a high variability of 
precipitation (Manzanas et al., 2014). The Guinea Savannah region, compared to the Forest zone 
and the Transition zone, is characterized by unimodal rainfall pattern with an average annual 
precipitation of 1,100 millimeters (mm) (Darfour and Rosentrater, 2016b). The average annual 
precipitation for Forest and Transition zones is respectively 1,500 mm and 1,300 mm. 
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 Problem Statement 
Given the significant gap between actual maize yields and their potential yields, estimated to be 
around 17% and 98% by Boullouz et al. (2022), it is crucial to identify the primary factors 
responsible for this yield gap. In Ghana, various models for crop simulation, such as the Decision 
Support System for Agrotechnology Transfer (DSSAT) (Jones et al., 2003), the Agricultural 
Production Systems Simulator (APSIM) (Keating et al., 2003) and CROPGRO-Peanut, have been 
used in different studies, including those conducted by MacCarthy et al. (2018), Danquah et al. 
(2020), and Naab et al. (2004), to evaluate maize yield gaps under different conditions. DSSAT 
and APSIM, along with AquaCrop (Hsiao et al., 2009) and InfoCrop (Aggarwal et al., 2006), are 
by far the most commonly used models in crop yield simulation (Fayaz et al., 2021). However, 
since these models were developed in Europe or the United States, they require a large amount of 
data for calibration to be usable in other regions (Mourice et al., 2014), which makes their use 
difficult in regions with very little data. As an alternative to this limitation, summary models that 
capture the essence of major processes and reduce the need for detailed processes, such as Light 
Interception and Utilization (LINTUL) or Environmental Policy Integrated Climate (EPIC), can 
be much more appropriate to use (Zhao et al., 2019).  

The LINTUL model approach, designed by Spitters and Schapendonk (1990), was based on the 
assumption that plant growth is directly proportional to the amount of intercepted light in optimal 
conditions. LINTUL-1 was developed to simulate potential yields by taking into account various 
factors, including an adequate supply of water and nutrients, a pest, disease, and weed-free 
environment, as well as prevailing weather conditions (van Oijen and Leffelaar, 2008b). 
LINTUL-2 assumes all conditions to be optimal except for limited water (Farré et al., 2000; 
Spitters and Schapendonk, 1990), and LINTUL-3 assumes all conditions to be optimal except for 
nitrogen (N) and water as the limiting factors (Shibu et al., 2010). The LINTUL models have been 
used in multiple studies conducted in SSA nations, including Togo, Nigeria, and South Africa, to 
assess the impact of specific variables on the yield of cassava and potatoes (Adiele et al., 2021; 
Ezui et al., 2018; Machakaire et al., 2016). Based on the literature review and the literature search, 
it was observed that the LINTUL crop model has not been sufficiently applied to analyze the key 
factors affecting the maize yield gap in Ghana. Boullouz et al. (2022) used LINTUL-1 to quantify 
and explain maize yield gaps across Ghana. With the implementation of the PFJ initiative since 
2017, one could assume better adoption of fertilizers and better management of farmlands. 
However, this assumption cannot be made for water as a limiting factor. Several studies have 
shown that maize production can be reduced by 20-40% in case of drought (Lobell et al., 2011). 
According to Shen et al. (2020), the effect of drought on maize yield depends on the growth stage 
of the crop, as maize has varying water requirements throughout its growth stages. During the 
reproductive growth period, it requires about 8-9 mm of water per day per plant, which is crucial 
for grain production (Aslam et al., 2015). Over the entire season, maize requires an average of 
450-600 mm of water, with a production of 15 kg of grains per millimeter of consumed water (Du 
Plessis, 2003; Rockström, 2003). Ultimately, maize consumes approximately 250 liters of water 
per kilogram of biomass production, i.e., about 500 liters per kilogram of grains, until maturity. 
This highlights the importance of water for maize growth to significantly reduce the yield gap, 
which is estimated at 6 mt ha-1 (Boullouz et al., 2022; IFPRI, 2014; Scheiterle and Birner, 2018). 
Therefore, a yield gap analysis of maize considering water as a limiting factor is essential. To this 
end, the LINTUL-2 model will be used in this study to estimate the water-limited potential yield 
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in Ghana, and the yield gap determined by subtracting the actual maize yield from the water-
limited potential yield will be spatially modeled. 

 Activity Statement 
To estimate farm-level maize yields gap in Ghana, a literature review was conducted to gain a 
better understanding of the estimation of water-limited maize yield using the LINTUL-2 model 
and spatial analysis of the yield gap in Ghana. Data collection has been carried out to build an 
accurate prediction model for maize water-limited potential yield using LINTUL-2. After the 
determination of the water-limited potential yield, the calculation of the yield gap has been 
performed, followed by the assessment of maize yield gap variability using a random forest 
regression. Secondly, a ridge regression has been used to evaluate the effect of these key variables 
on the maize yield gap. Random forest can detect linear and non-linear relationships between the 
yield gap and its covariates (Mohapatra et al., 2020), making it ideal for assessing the most 
influential variables that are related to maize yield gaps in Ghana, but not their quantitative impact 
on yield variability. We therefore used a regression model to better understand the dynamics of 
the maize yield gap in our trials. However, as the first attempt using multilinear regression (MLR) 
did not meet the necessary validity assumptions, we proceeded with a ridge regression analysis to 
explore the direction of correlations between our covariates and the yield gap. By utilizing these 
methods, we can accurately evaluate the water-limited potential yield of maize, calculate the yield 
gap, and identify key variables that contribute to yield gap, leading to the formulation of policies 
to address the yield gap in Ghana. 

 Objectives 
• Assess whether the meteorological data (remote sensing data) currently available on a global 

scale are sufficient to justify their use in modeling data poor environments. 
• Develop an accurate prediction model for maize yield under water-limited conditions in Ghana 

using LINTUL-2. 
• Determine the key factors that are related to maize water-limited yield gap in Ghana. 
• Assess the spatial variation of maize water-limited potential yield and yield gap in Ghana. 
• Formulate policies for decision-makers to address the yield gap in Ghana. 

 Hypotheses 
• LINTUL-2 is capable of accurately estimating the maize water-limited potential yield across 

Ghana. 
• Random forest and ridge regression can identify the main factors that contribute significantly 

to the yield gap of maize in Ghana. 
• Maize water-limited potential yield and yield gap have a large spatial variation in across 

different regions of Ghana. 

 Justification Statement 
Maize is an important cereal to ensure the food security in Ghana. Unfortunately, the national 
production falls short of meeting the growing demand of the population, primarily due to yield 
gaps between the potential and actual yields. Identifying the key factors that influence maize yield 
and its variability across Ghana would allow for the formulation of precise recommendations to 
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reduce these gaps and achieve food security in the country, while also contributing to the 
achievement of the Sustainable Development Goals (SDGs) related to food. One major obstacle 
in this research is the scarcity of reliable data, which is essential for accurate crop modeling. To 
overcome this, we leveraged two different remote sensing datasets and evaluated their 
effectiveness in representing actual data. By identifying the dataset that best aligns with ground 
truth data, we can enhance the reliability and applicability of the research, paving the way for more 
targeted and effective agricultural interventions in Ghana.
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CHAPTER 2: LITERATURE REVIEW 

 Agriculture in Ghana 
Agriculture is one of the main pillars of Ghana’s development (Addo and Amponsah, 2018; Bua 
et al., 2020; Darfour and Rosentrater, 2016b). It occupies over 57% of the country’s land area, 
employs 38.3% of the active population, and contributes approximately 20% to the country’s GDP 
(MoFA, 2019a). The crops grown in Ghana include maize, oil palm, rubber, coconut, pineapple, 
groundnut, soybean, sorghum, millet, rice, and yam (Darfour and Rosentrater, 2016a; Quaye, 
2008). The agriculture sector in Ghana is mostly dominated by smallholder farmers (90%) whose 
land size does not exceed 2 ha and who still practice traditional agriculture (Adzawla et al., 2021; 
Scheiterle and Birner, 2018). It also manages to cover 51%, 60%, and 50% of the country’s 
respective needs for cereals, fish, and meat (Darfour and Rosentrater, 2016a; SARI, 1996; 
Scheiterle and Birner, 2018). 

Figure 1 provides an overview of Ghana’s agriculture sector, including information on imports 
and the number of undernourished people. Over the last decade, maize and cocoa have had average 
land areas of over 1 million ha and 1.5 million ha, respectively. However, despite occupying the 
most significant proportion of cultivated land, they have the lowest yields of 5.2 and 2.06 mt ha-1, 
respectively. This low maize productivity is the main reason for high maize imports compared to 
other agricultural products (MoFA, 2020). Figure 1D shows a significant decrease in the 
proportion of undernourished people, reaching 4.1% in 2021, or about 1.3 million people, which 
is still significant. 
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Source: Author creation from FAOSTAT/FAO (2023). 

Figure 1. Overview of Ghana’s agriculture sector 

 Overview of Maize 
Maize cultivation plays a significant role in Ghana’s agricultural sector, providing food, income, 
and livelihoods for millions of people. It is grown throughout the country, with Coastal Savannah 
zone, Forest zone, Transition zone and Guinea Savannah zone being the primary production areas 
(Darfour and Rosentrater, 2016a). Farmers typically grow maize in rotation with other crops to 
maintain soil fertility and reduce pest and disease pressure (Darfour and Rosentrater, 2016a). Both 
rainfed and irrigated systems are used for maize cultivation, with the majority of production being 
rainfed and traditional (Scheiterle and Birner, 2018). 

However, maize cultivation in Ghana faces various challenges, including a poor soil fertility, pest 
and disease pressure, post-harvest losses ranging from 5% to 70% (Darfour and Rosentrater, 
2016b), and the impact of climate change. To overcome production limitations in specific areas, 
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several maize varieties have been developed (Adu et al., 2014). For example, the Obatanpa variety 
is an open-pollinated variety that has good protein quality and can produce an average yield of 
4.6 mt ha-1. The Omankwa variety is tolerant to drought and Striga and has a good protein quality, 
yielding an average of 4.5 mt ha-1 (Adu et al., 2014). Planting of certified seed is recommended 
between late May to early July in Sudan Savannah, late May to late June in Guinea Savannah, mid-
March to late April in Transition Savannah, early March to late April in Forest Savannah, and late 
March to late April in Coastal Savannah for the major season. Planting dates are between mid-July 
to early September and mid-July to early September in Transition and Forest, respectively, for the 
minor season. Planting should be at 75 cm between every two rows and 40 cm between stands for 
early maturing varieties and 80 cm between every two rows and 40 cm between stands with 2-4 
seeds per hole of 5-7 cm deep (Adu et al., 2014). 

According to Chapoto and Ragasa (2013), the application of 1 kg of nitrogen per hectare increases 
the maize yield by 22 kg in Ghana. This demonstrates the significant role of nitrogen in maize 
yield. In fact, due to the low nitrogen content in soil, application of fertilizer is highly 
recommended to improve soil productivity. However, the current fertilizer application rate in 
Ghana is only 44 kg N per hectare (Chapoto and Ragasa, 2013), which is lower than the 
recommended rate of 61 kg (Essel et al., 2020).  

 Crop Model in Ghana 
Several years ago, empirical models, particularly regression analysis, were commonly used in crop 
production studies (Oteng-Darko et al., 2013). These models were useful in establishing the 
relationship between relevant variables and extrapolating based on the relations detected in the 
training dataset (Paustian et al., 2019). However, for many years, mechanistic models have been 
used in some studies to simulate the growth of real crops by describing the soil-plant-atmosphere 
system using mathematical equations development (Jame and Cutforth, 1996). These models are 
able to predict the final state of total biomass or crop yield by providing valuable quantitative 
information about the significant processes involved in crop growth and development, such as leaf, 
root, stem, and grain development (Jame and Cutforth, 1996). Furthermore, unlike empirical 
models, mechanistic model parameters have a physical meaning, which facilitates understanding 
and interpretation (Cytiva, n.d.). 

Various mechanistic models, such as DSSAT (Jones et al., 2003), APSIM (Keating et al., 2003; 
McCown et al., 1996), AquaCrop (Hsiao et al., 2009; Raes et al., 2009; Steduto et al., 2009), and 
LINTUL (Spitters and Schapendonk, 1990), have been developed to simulate crop growth and 
yield formation processes based on meteorological data and soil characteristics. In Ghana, crop 
models have been used to assess maize variability and yield gaps in Ghana AEZs with DSSAT 
(MacCarthy et al., 2018), the implications of different sets of climate variables on regional maize 
yield simulations with LINTUL-5 (Srivastava et al., 2020), the yield gap in smallholder farming 
with APSIM (Danquah et al., 2020), and the determinants of yield gap by combining LINTUL-1 
with statistical and geospatial analyses (Boullouz et al., 2022). 

All these studies results revealed that the significant determinants for closing the yield gap in 
Ghana are soil organic matter, soil water-holding capacity, root zone depth, rainfall, sulfur 
fertilizer, and nitrogen fertilizer. The use of improved fertilizer, supplementary irrigation, and 
enhanced farmer practices have the potential to reduce the yield gap (MacCarthy et al., 2018).  
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CHAPTER 3: DATA AND METHODOLOGY 

 Study Area 
Ghana is a West African country bordered by Côte d’Ivoire to the west, Burkina Faso to the north, 
and Togo to the east. With a total area of approximately 238,537 square kilometers, Ghana is 
situated between 4° and 12° north latitude and 4° and 3° west longitude. It has a population of 
around 31 million people, with great ethnic diversity. Akan is the most widely spoken local 
language, while English is the official language (GSS, 2015). Before 2018, the country was 
comprised of 10 administrative regions, which were subsequently expanded to 16. These regions 
include Greater Accra, Central, Eastern, Western, Ashanti, Northern, Upper East, Upper West, 
Volta, Bono, Bono East, Savannah, North East, Oti, Western North, and Ahafo, each with its own 
regional capital (GSS, 2021; Kendie, 2019). All 272 districts are categorized into six different 
AEZs – Coastal Savannah, Evergreen Forest, Deciduous Forest, Transitional, Guinea Savannah, 
and Sudan Savannah – with the three main zones being the humid south, the northern Sudan, and 
the Sahelian northeast (GSS, 2015).  

 

Figure 2. FERARI 2020 study sites selected for this research 

In order to identify the key factors related to the water-limited maize yield gap in Ghana, we 
carefully selected 10 sites (as shown in Figure 2) from the Fertilizer Research and Responsible 
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Implementation (FERARI1) project trials conducted during the 2020 growing season. These 
selected sites were used to assess the water-limited potential yield of maize and to investigate the 
drivers of the yield gap. To map the potential yield and yield gap in Ghana, we used 2,236 data 
points selected from Boullouz et al. (2022). In their study, they selected randomly between 8 and 
10 data points per district based on the vegetation band in the land use map of the country. It is 
important to note that in our study, we used the same study sites, random points, and datasets as 
Boullouz et al. (2022), by considering two additional study sites – Gbalayi and Kpalga (Figure 2) 
to provide a more accurate quantification of maize water-limited yield gap in Ghana. Boullouz et 
al. (2022) investigated this objective under optimal conditions using LINTUL-1, and our study 
aimed to extend their findings to water-limited conditions. 

 Analytical Framework of the Study 
Figure 3 presents the analytic framework of this study, which involved 13 steps to achieve the 
research objectives. The first step in the study involved data collection from different data sources. 
In fact, to run the LINTUL-2 model, some weather data and soil parameters (Table 1) are required. 
The soil parameters were obtained from ISRIC – World Soil Information.2 The weather data could 
be extracted from Google Earth Engine from ERA5 at 11 kilometer (km) resolution or from 
NASA3 Prediction Of Worldwide Energy Resources (POWER) at 1/2° latitude by 5/8° longitude 
resolution (Table 1). As LINTUL-1 has been calibrated using the temperature and solar 
distribution of ERA5-Land and also on the basis of the precipitation comparison results presented 
below, we ran our simulations with ERA5-Land weather data. Additionally, due to the model’s 
sensitivity to rainfall data and distribution, actual rainfall data was acquired from the Ghana 
Meteorological Agency (GMET) for the 10 trial locations. The GMET rainfall data was complete 
for Ashanti Anwomaso, Ashanti Ayeduase, Kwame Nkrumah University of Science and 
Technology (KNUST), Ejura, Nyankpala, Gbalayi, and Kpalga. However, at Sunyani and Wenchi, 
there were some missing daily rainfall values, which were supplemented with ERA5 rainfall data. 
Additionally, for Mampong, where the rainfall was relatively negligible, we relied on the ERA5 
rainfall data. The remaining five variables (solar radiation, minimum temperature, maximum 
temperature, vapor pressure, and mean wind speed) were obtained from ERA5-Land to ensure 
consistency in data source. Since the GMET stations did not cover the entire country, weather data 
from ERA5-Land was collected for the 2,236 randomly selected data points to perform the spatial 
analysis of yield gaps in Ghana. 

Table 1 gives more information about the sources of the different data used. 

 
1 https://ifdc.org/projects/fertilizer-research-and-responsible-implementation-ferari/ 
2 Available on ISRIC SoilGrids. 
3 Available on NASA POWER. 

https://ifdc.org/projects/fertilizer-research-and-responsible-implementation-ferari/
https://www.isric.org/explore/soilgrids
https://power.larc.nasa.gov/
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Table 1. Data source of the variables and parameters used 

 Variable Source Author 
Weather data     
Solar radiation (kJ m-2 d-1)  ERA-5 Hersbach et al. (2020) 
Minimum temperature (° Celsius) ERA-5 Hersbach et al. (2020) 
Maximum temperature (° Celsius) ERA-5 Hersbach et al. (2020) 
Vapor pressure (kPa), ERA-5 Hersbach et al. (2020) 
Mean wind speed (m s-1) ERA-5 Hersbach et al. (2020) 

Precipitation (mm d-1) GMET Ghana Meteorological 
Agency 

Soil data     
Water content at saturation (WCST) ISRIC data Leenaars et al. (2018) 
Water content at field capacity (WCFC) ISRIC data (Poggio et al., 2021) 
Permanent wilting point (WCWP) ISRIC data Leenaars et al. (2018) 

Leenaars 

Soil properties, crop growth, and yield data for the 10 selected sites were obtained from the 
FERARI trial datasets. After preprocessing, which involved removing data points with missing 
actual yield values, normalization of the yield standardizing the numerical variables using 
respectively “bestNormalize()” and the “scale()” functions in R, and unifying the treatment names 
applied per plot, the dataset consisted of 460 unique data points. Table 3 presents general 
information about the trial locations. Next, we calibrated the crop and soil parameters for the 
LINTUL-2 model. For parameterizing soil parameters, we used soil parameters of the upper 
0-30 cm from the soil surface obtained from ISRIC for the 10 study sites and the random points. 
After LINTUL-2 model parameterization, potential yield, harvest index and vegetative biomass 
were simulated. The maize yield gap across the ten FERARI study sites was then determined. 

Next, we statistically evaluated the observed maize yield and maize yield gap variability across 
the 10 study sites and then across the different treatments applied. This analysis was performed 
using analysis of variance (ANOVA) and Tukey post hoc test. Subsequently, we constructed a 
random forest model with fivefold cross-validation, hyperparameter tuning, and recursive feature 
selection on various explanatory variables (Table 2), except for the ones used in the simulation 
with the LINTUL-2 model (Table 1), including climate, precipitation, and soil data to explain the 
maize yield gap under water-limited conditions. It was implemented using the train and 
trainControl functions from the caret package in R. The resulting model was configured with ntrees 
= 500, node size = 1, and mtry = 2. Due to the violation of the validity assumptions of the linear 
regression model, we were not able to assess the effect of the covariates on the yield gap. So, we 
used the random forest model results to select the most important variables for explaining the 
maize yield gap, on which we performed a ridge regression using “stats” and “RidgeCV” from the 
libraries “regressors” and “sklearn” in Python to know the direction of their effect. The Pareto 
principle is commonly applied in model construction, which involves splitting the dataset into a 
training set (80%) and a testing set (20%) to prevent overfitting (Hemdan et al., 2020). However, 
this approach is primarily used for forecasting models. Since our study’s main objective is to 
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comprehend the yield gap in Ghana, we will not split our data and instead use the entire dataset 
for model construction. 

Finally, using the calibrated parameters of LINTUL-2, we simulated the maize water-limited 
potential yield of 2,236 randomly selected data points for 2017 and then calculated the yield gap 
at these data points using maize observed yield from MoFA. Based on the data points, we 
interpolated the potential yield and yield gap using ordinary kriging, through the QGIS plugin 
(Smart-Map) developed by Pereira et al. (2022), to create a geospatial analysis of the maize 
potential yield and yield gap across Ghana. Then, we use the semivariograms to assess the quality 
of the interpolations. Finally, we formulated policies for decision-makers to address the yield gap 
in Ghana. 

Table 2. Independent variables used to explain the maize yield gap variability in our study 
site 

Variable Meaning 
N_applied* amount of nitrogen fertilizer applied 

S_applied amount of sulfur fertilizer applied 

Zn_applied amount of zinc fertilizer applied 

Fe_applied amount of iron fertilizer applied 

Potasum_applied amount of potassium fertilizer applied 

Pho_applied* amount of phosphorus fertilizer applied 

pH pH of the soil 

Soil_N* soil nitrogen content 

Mg_meq_100g magnesium milliequivalents per 100 grams of soil 

K_me_100g* soil exchangeable potassium milliequivalents per 100 grams of soil 

eCEC_meq_100g* effective cation exchange capacity milliequivalents per 100 grams of soil 

Soil_OM* soil organic matter content 

Soil_Zn* soil zinc content 

Soil_Fe* soil iron content 

Soil_C* soil carbon content 

Soil_P soil phosphorus content 

TEB_me_100g total exchangeable bases milliequivalents per 100 grams of soil 

EA_meq_100g* activation energy milliequivalents per 100 grams of soil 

BS_* base saturation 

SO4S_mg_kg sulfate sulfur milligrams per kilogram of soil 

* Variables that were retained as relevant drivers by the recursive feature selection. 
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Table 3. General information on the study sites 

Trial Info Ashanti 
Anwomaso 

Ashanti 
Ayeduase Ejura KNUST Mampong Nyankpala Sunyani Kpalga Gbalayi Wenchi 

Latitude* 6.697183 6.697183 7.40472 6.685167 7.298333 9.418917 7.401056 9.453555 9.495556 7.6518 
Longitude* -1.5504 -1.5504 -1.64447 -1.57769 -1.39581 -0.99428 -2.28891 -0.00262 -0.9719444 -2.1056 

Planting date* June 1 June 1 September 16 June 1 September 24 June 24 October 1 June 27 July 9 August 19 
Nb. Reps* 4 4 3 4 3 4 1 3 4 3 
Nb. Plots* 40 40 30 96 48 88 05 24 40 51 
WCSAT** 0.338 0.339 0.339 0.363 0.365 0.382 0.353 0.341 0.382 0.339 
WCFC** 0.114 0.117 0.117 0.133 0.136 0.149 0.127 0.121 0.149 0.117 
WCWP** 0.048 0.049 0.049 0.062 0.062 0.074 0.056 0.05 0.074 0.049 

WHC 0.11 0.09 0.07 0.07 0.04 0.04 0.11 0.05 0.11 0.09 
Total amount 

during the 
growing season 

(mm)*** 

409.9 409.9 217.8 409.9 339.08 581.8 211.57 576.1 540.4 464.26 

Source: *From FERARI 2020 trials datasets. 
**From ISRIC data. 
***From GMET weather data and missing values from ERA5 weather data. 
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Figure 3. Analytical framework
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Table 4 provides a comprehensive overview of the diverse treatments implemented across the trials 
during the various experiments in the studied sites of the 2020 growing season. These treatments 
encompassed the application of specific combinations of nitrogen (N), phosphorus (P), potassium 
(K), sulfur (S), iron (Fe), and zinc (Zn) to the crops. The most applied treatments across the 
examined sites were NPK, NPK+S, and NPK+Zn. The application rate is described in Table 4. 

Table 4. Total numbers of treatment applied in the 10 different trials 

Treatment Observation 
Nutrient Rate (kg ha-1) 

N P2O5 K2O S Zn Fe 
Control 40 0 0 0 0 0 0 

NKS 19 18 0 25 10 0 0 
NPK 69 18-120 20-40 25-40 0 0 0 

NPK+S 90 18-120 20-40 25-40 15-10 0 0 
NPK+Zn 66 120 20-40 0-40 0 0-2.5 0 

NPK+Zn+Fe 32 120 20-40 40 0 2.5 5 
NPK+S+Zn 35 120 40 40 15 2.5 0 

NPK+S+Zn+Fe 33 120 20-40 40 15 0-2.5 5 
NPS 19 18 20 0 10 0 0 
PK 19 0 0-20 25 10 0 0 

PKS 20 0 20 25 10 0 0 
PS 18 0 20 0 10 0 0 

Source: FERARI 2020 trials dataset. 

 LINTUL-2 
This section introduces the LINTUL-2 model. To understand the model, we will first present the 
LINTUL-1 model and then explain the additional parameters and relationships in LINTUL-2. 

 LINTUL-1 Overview  
LINTUL-1 is a model that simulates the daily biomass production (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, expressed by 
Equation 3) based on light interception (𝐼𝐼𝐼𝐼𝐺𝐺𝐼𝐼, 𝑀𝑀𝑀𝑀 ℎ𝑎𝑎-1𝑑𝑑-1) and light use efficiency (𝐺𝐺𝐿𝐿𝐿𝐿, 
𝑔𝑔 (𝐷𝐷𝑀𝑀)𝑀𝑀𝑀𝑀-1) under optimal conditions (ample supply of water, and nutrients in a pest-, disease- 
and weed-free environment, under the prevailing weather conditions (van Oijen and Leffelaar, 
2008a). 𝐼𝐼𝐼𝐼𝐺𝐺𝐼𝐼 is expressed as: 

 𝐼𝐼𝐼𝐼𝐺𝐺𝐼𝐼 = 0.5 × 𝐷𝐷𝐺𝐺𝐼𝐼 × (1 − 𝑒𝑒-𝑘𝑘×𝐿𝐿𝐿𝐿𝐿𝐿) (1) 

The model uses the dry weights of plant organs, including leaves, stems, roots, and grains, as state 
variables. The daily crop biomass increment is calculated as the product of the amount of 
intercepted photosynthetically active radiation (IPAR) by the crop and the light use efficiency 
(Farré et al., 2000). LINTUL-1 GTOTAL is expressed as: 
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 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐺𝐺𝐿𝐿𝐿𝐿 × 𝐼𝐼𝐼𝐼𝐺𝐺𝐼𝐼 (2) 

Dry matter produced is partitioned among the various plant organs using partitioning factors 
defined as a measured function of thermal time. The partitioning coefficient of dry matter to the 
leaves (𝐹𝐹𝐺𝐺𝐹𝐹), stem (𝐹𝐹𝐹𝐹𝐺𝐺), roots (𝐹𝐹𝐼𝐼𝐺𝐺), and storage organs (𝐹𝐹𝐹𝐹𝐺𝐺) follows the development stage 
of the crop. During the vegetative stage, most of the dry matter is allocated to the leaves, then to 
the roots and to the stems, and during the reproductive stage, the crop allocates the dry matter 
increasingly more to the storage organs (Boullouz et al., 2022). Partition coefficients for 
𝐺𝐺𝐼𝐼𝐿𝐿𝐺𝐺𝐿𝐿𝐺𝐺-1 are expressed as follows: 

 

⎩
⎨

⎧
𝐼𝐼𝑅𝑅𝐼𝐼𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1 × 𝐹𝐹𝐼𝐼𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1
𝐼𝐼𝑅𝑅𝐹𝐹𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1 × 𝐹𝐹𝐹𝐹𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1
𝐼𝐼𝑅𝑅𝐺𝐺𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1 × 𝐹𝐹𝐺𝐺𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1

𝐼𝐼𝑅𝑅𝐹𝐹𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1 × 𝐹𝐹𝐹𝐹𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1

 (3) 

where 𝐼𝐼𝑅𝑅𝐼𝐼𝐺𝐺stands for the leaf growth rate, 𝐼𝐼𝑅𝑅𝐹𝐹𝐺𝐺 is the steam growth rate, 𝐼𝐼𝑅𝑅𝐼𝐼𝐺𝐺 is the root 
growth rate, and RWSO the storage organ growth rate. 

 Impact of Limited Water Availability on Crop Growth 
The difference between LINTUL-2 and LINTUL-1 impacts the simulation results through three 
key variables. The first variable, the transpiration reduction factor (𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿𝐼𝐼𝐹𝐹), affects total crop 
growth and the leaf expansion rate in the juvenile stage, while the second, the relative modification 
of allocation to root by drought (𝐹𝐹𝐼𝐼𝐺𝐺𝑀𝑀𝐺𝐺𝐷𝐷), and third, the relative modification of allocation to 
shoot by drought (𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀𝐺𝐺𝐷𝐷), variables influence respectively root and shoot partitioning. 
𝐹𝐹𝐼𝐼𝐺𝐺𝑀𝑀𝐺𝐺𝐷𝐷 and 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀𝐺𝐺𝐷𝐷 are expressed as: 

 𝐹𝐹𝐼𝐼𝐺𝐺𝑀𝑀𝐺𝐺𝐷𝐷 = 𝑀𝑀𝐺𝐺𝑀𝑀[1. , 1. (𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿𝐼𝐼𝐹𝐹⁄ + 0.5 )] (4) 

 

 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀𝐺𝐺𝐷𝐷 = 1 − 𝐹𝐹𝐼𝐼𝐺𝐺 (1.−𝐹𝐹𝐼𝐼𝐺𝐺 𝐹𝐹𝐼𝐼𝐺𝐺𝑀𝑀𝐺𝐺𝐷𝐷⁄ )⁄  (5) 

The modified quantities of total daily biomass produced and the distribution of roots and shoots 
are expressed as follows: 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-2 =
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1 ×  𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿𝐼𝐼𝐹𝐹 (6) 
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𝐹𝐹𝐹𝐹𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-2 = 𝐹𝐹𝐹𝐹𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-1 × 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀𝐺𝐺𝐷𝐷

 (7) 
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𝐼𝐼𝑅𝑅𝐺𝐺𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-2 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-2 × 𝐹𝐹𝐺𝐺𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-2

𝐼𝐼𝑅𝑅𝐹𝐹𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-2 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-2 × 𝐹𝐹𝐹𝐹𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿-2

 (8) 

 

 Soil Water Balance 
The soil water balance is added to LINTUL-2 that drives water availability and the impact on crop 
production. It is determined by various factors such as precipitation, irrigation, runoff or run-on, 
percolation to or capillary rise from deeper soil layers, and evapotranspiration of water from the 
soil surface and the crop (van Oijen and Leffelaar, 2008b). 

The actual rate of water loss from the soil surface by evaporation (𝐿𝐿𝐹𝐹𝐺𝐺𝐼𝐼,𝑚𝑚𝑚𝑚 𝑑𝑑-1) and from the 
crop by transpiration (𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿,𝑚𝑚𝑚𝑚 𝑑𝑑-1) depends on the potential values, the water content (𝑅𝑅𝑊𝑊, 
𝑚𝑚3 𝐹𝐹2𝐺𝐺 𝑚𝑚-3soil): the water content at saturation (𝑅𝑅𝑊𝑊𝐹𝐹𝐺𝐺, 𝑚𝑚3 𝐹𝐹2𝐺𝐺 𝑚𝑚-3 soil), at field capacity 
(𝑅𝑅𝑊𝑊𝐹𝐹𝑊𝑊, 𝑚𝑚3 𝐹𝐹2𝐺𝐺 𝑚𝑚-3 soil), at wilting point (𝑅𝑅𝑊𝑊𝑅𝑅𝐼𝐼, 𝑚𝑚3 𝐹𝐹2𝐺𝐺 𝑚𝑚-3 soil), and at air dryness 
(𝑅𝑅𝑊𝑊𝐺𝐺𝐷𝐷, 𝑚𝑚3 𝐹𝐹2𝐺𝐺 𝑚𝑚-3 soil) and the soil characteristics (Nyombi, 2010). Water content affects 
many stages of crop development such as emergence, root growth, crop growth rate, and the 
allocation of biomass over roots and shoot of the crop. In fact, all those stages could be hampered 
if the water content is below the critical water content (𝑅𝑅𝑊𝑊𝑊𝑊𝐼𝐼, 𝑚𝑚3 𝐹𝐹2𝐺𝐺 𝑚𝑚-3 soil) or more than the 
𝑅𝑅𝑊𝑊𝐹𝐹𝑊𝑊 (van Oijen and Leffelaar, 2008b). 𝑅𝑅𝑊𝑊𝑊𝑊𝐼𝐼 is expressed as: 

 𝑅𝑅𝑊𝑊𝑊𝑊𝐼𝐼 = 𝑅𝑅𝑊𝑊𝑅𝑅𝐼𝐼 + 𝑀𝑀𝐺𝐺𝑀𝑀 �0.01 ,
𝐼𝐼𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿

𝐼𝐼𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿 + 𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿𝑊𝑊𝐺𝐺
(𝑅𝑅𝑊𝑊𝐹𝐹𝑊𝑊 −𝑅𝑅𝑊𝑊𝑅𝑅𝐼𝐼)� (9) 

where 𝐼𝐼𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿 is the potential transpiration rate of the crop and 𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿𝑊𝑊𝐺𝐺 is the transpiration 
coefficient. From the observations made in Figure 4, showing the relational diagram of LINTUL-2, 
it can be inferred that water balance of the soil involves three main sources of supply: precipitation, 
irrigation, and water absorption by roots as they elongate to reach new layers. However, it should 
be noted that a portion of this water is lost and does not penetrate the soil. This loss is due to several 
factors, such as interception by plant leaves, runoff, drainage, plant transpiration caused by solar 
radiation, and soil evaporation. The amount of water in the single rooted soil layer at time 𝑑𝑑 is: 

 𝑑𝑑𝑡𝑡 = 𝑑𝑑0 + ��𝐼𝐼 + 𝐼𝐼 +
𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑

� − (𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡 + 𝐼𝐼𝐿𝐿 + 𝐷𝐷 + 𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿 + 𝐿𝐿𝐹𝐹𝐺𝐺𝐼𝐼)� Δ𝑡𝑡, (10) 
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where R is the rain (𝐼𝐼𝐺𝐺𝐼𝐼𝐿𝐿, mm d-1), I is the Irrigation (IRRIG, mm d-1), 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑𝑡𝑡

 is the water explored 
by the growing roots (𝐿𝐿𝑀𝑀𝐼𝐼𝐺𝐺𝐺𝐺𝐼𝐼, mm d-1), 𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡 is the intercepted rain (𝐼𝐼𝐿𝐿𝐼𝐼𝐿𝐿𝐺𝐺𝑊𝑊, mm d-1), 𝐼𝐼𝐿𝐿 is 
the runoff (𝐼𝐼𝐿𝐿𝐿𝐿𝐺𝐺𝐹𝐹𝐹𝐹, mm d-1), D is the drainage rate (𝐷𝐷𝐼𝐼𝐺𝐺𝐼𝐼𝐿𝐿, mm d-1), and Δ𝑡𝑡 is the time step 
and equals to one day. 

The modeling of soil water balance is typically achieved through two primary methods: the tipping 
bucket approach and the Richards approach. 

 Potential and Actual Rates of Evaporation and Transpiration 
Crop evapotranspiration (𝐿𝐿𝐺𝐺, expressed by Equation 12) is crucial in agricultural systems and the 
hydrological cycle, with over 90% of water used in agriculture lost by soil evaporation and crop 
transpiration (Ding et al., 2013). Evaporation refers to the process by which water is converted 
from its liquid state to its gaseous state and is influenced by factors such as temperature, humidity, 
wind, and solar radiation. On the other hand, transpiration is the process by which plants absorb 
water through their roots and release it into the atmosphere through their leaves, mainly through 
tiny pores called stomata (Wang and Wang, 2022). Both of these processes are essential for 
regulating the water balance of crops, as they enable the plants to maintain their water content and 
prevent excessive water loss. Furthermore, transpiration plays a vital role in the uptake of essential 
nutrients by the plants, as water is the medium through which nutrients are transported from the 
soil to the plant cells (Wang and Wang, 2022). 

The Penman equation is used to determine potential evapotranspiration, including the potential 
transpiration (𝐼𝐼𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿, expressed by Equation 14) and the potential evaporation (𝐼𝐼𝐿𝐿𝐹𝐹𝐺𝐺𝐼𝐼, 
expressed by Equation 13) (Farré et al., 2000; Nyombi, 2010). The actual transpiration (𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿, 
expressed by Equation 11) and the actual evaporation (𝐿𝐿𝐹𝐹𝐺𝐺𝐼𝐼) rates are determined by considering 
the potential transpiration and the soil water status and the potential evaporation and the soil water 
status, respectively (Penman, 1948; van Oijen and Leffelaar, 2008b). 

 𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿 = 𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿𝐼𝐼𝐹𝐹 × 𝐼𝐼𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿 (11) 

 

 𝐿𝐿𝐺𝐺 =
∆

∆ + 𝛾𝛾
𝐼𝐼𝑖𝑖𝑒𝑒𝑡𝑡
𝜆𝜆

+
𝛾𝛾

∆ + 𝛾𝛾
𝐿𝐿𝑎𝑎𝑖𝑖𝑎𝑎
𝜆𝜆

 (12) 

 

 𝐼𝐼𝐿𝐿𝐹𝐹𝐺𝐺𝐼𝐼 = 𝑒𝑒(1−0.5𝐿𝐿) �
∆

∆ + 𝛾𝛾
𝐼𝐼𝑖𝑖𝑒𝑒𝑡𝑡_𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠

𝜆𝜆
+

𝛾𝛾
∆ + 𝛾𝛾

𝐿𝐿𝑎𝑎𝑖𝑖𝑎𝑎
𝜆𝜆
� (13) 

 

 𝐼𝐼𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿 = 𝑀𝑀𝐺𝐺𝑀𝑀 �0 , 𝑒𝑒(1−0.5𝐿𝐿) �
∆

∆ + 𝛾𝛾
𝐼𝐼𝑖𝑖𝑒𝑒𝑡𝑡_𝑐𝑐𝑎𝑎𝑖𝑖𝑠𝑠𝑒𝑒𝑐𝑐

𝜆𝜆
+

𝛾𝛾
∆ + 𝛾𝛾

𝐿𝐿𝑎𝑎𝑖𝑖𝑎𝑎
𝜆𝜆
� − 0.5 𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡� (14) 
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where Δ is the slope of saturated vapor pressure curve; 𝐿𝐿𝑎𝑎𝑖𝑖𝑎𝑎 is the aerodynamic term; 𝛾𝛾 is the 
adiabatic psychrometer; 𝜆𝜆 is the heat of vaporization, and 𝐼𝐼𝑖𝑖𝑒𝑒𝑡𝑡 is the net radiation term. 

Evaporation decreases as soil water content falls below field capacity (𝑅𝑅𝑊𝑊 <  𝑅𝑅𝑊𝑊𝐹𝐹𝑊𝑊) and stops 
when it becomes airdry (𝑅𝑅𝑊𝑊 =  𝑅𝑅𝑊𝑊𝐺𝐺𝐷𝐷). Under ample water supply, water uptake rate by the 
crop follows the potential transpiration rate closely. But when soil water content goes below a 
critical level (𝑅𝑅𝑊𝑊 <  𝑅𝑅𝑊𝑊𝑊𝑊𝐼𝐼), actual transpiration (𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿) decreases, and the stomata closes. The 
critical soil water level (𝑅𝑅𝑊𝑊𝑊𝑊𝐼𝐼) lies between wilting point and field capacity 
(𝑅𝑅𝑊𝑊𝑅𝑅𝐼𝐼 <  𝑅𝑅𝑊𝑊𝑊𝑊𝐼𝐼 <  𝑅𝑅𝑊𝑊𝐹𝐹𝑊𝑊), which depends on crop characteristics expressed in the 
“transpirational constant” (𝐺𝐺𝐼𝐼𝐺𝐺𝐿𝐿𝑊𝑊𝐺𝐺). Too much water in the soil can hamper crop functioning, 
including transpiration when soil water content is higher than the waterlogging threshold (𝑅𝑅𝑊𝑊 >
 𝑅𝑅𝑊𝑊𝑅𝑅𝐿𝐿𝐺𝐺) (van Oijen and Leffelaar, 2008b). 

 

Source: Author creation from Nyombi (2010) and van Oijen and Leffelaar (2008b). 

Note: Wleaf, weight of leaves; Wstem, weight of stems; Wroot, weight of roots; Wgrain, 
weight of grain; Tbase, the low lowest temperature for the crop to grow; and Tsum, 
accumulated temperature. 

Figure 4. Relational diagram of LINTUL-2 to simulate the water-limited potential yield 

 Methods of Data Analysis: Tools and Techniques 
In this section, we outline the various tools and techniques employed to estimate the maize water-
limited yield in Ghana.  

 Rainfall Data Comparison 
A time series is a set of statistical observations arranged in chronological order. The analysis of 
these kind of data finds application in various domains, including weather forecasting, sales 
analysis, and the health domain, enabling a better understanding of underlying effects and 
facilitating informed decision-making (Jose, 2022). Time series comprise four different 
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components: trend, seasonal variations, the cyclical variations, and random fluctuations (Chatfield 
and Xing, 2019; Jose, 2022). The trend represents a consistent pattern in the data, while the other 
variations encompass changes occurring at some specific moments (Dagum and Cholette, 2006). 
These variations may be influenced by various unseen factors, such as increased sales during 
specific months of the year or fluctuations in unemployment rates between seasons. So, it is 
important to separate these components during analysis to avoid drawing incorrect conclusions. 

Given the significance of rainfall and soil parameters in our model and the limited availability of 
crop modeling data, particularly in African countries, we aimed to determine whether ERA5 
weather data or NASA POWER weather data is more closely aligned with actual weather data 
from GMET. This will help to know which data source, between NASA POWER and ERA5, to 
use for the random points. Our focus will be on the rainfall trend, as it offers insights into the 
overall evolution of the series. While several tools are used to de-seasonalize time series data, the 
moving average is one commonly employed method (Chatfield and Xing, 2019). However, since 
our data spans only one year, it may not effectively reveal differences between all components of 
the rainfall distribution. To address this, we employed a local polynomial regression, which 
combines local regression and moving average techniques. This method proves to be highly 
effective in removing noise from data and smoothing it out. We anticipate that the seasonal/random 
variation will be treated as the noisy components and will be effectively captured through the use 
of local polynomial regression. 

In the local polynomial regression, the smoothed value of the variable is estimated by the function:  

 𝑚𝑚(𝑧𝑧) = �  𝛽𝛽𝑗𝑗(𝑧𝑧 − 𝑥𝑥)𝑗𝑗,
𝑒𝑒

𝑗𝑗=1

 (15) 

for 𝑧𝑧 in the neighborhood of x defined by the bandwidth ℎ(𝑥𝑥) as the window [𝑥𝑥 − ℎ(𝑥𝑥),𝑥𝑥 + ℎ(𝑥𝑥)] 
(Fan and Gijbels, 1996; Ledolter, 2008). The bandwidth is a critical parameter, and selecting an 
appropriate value is crucial for obtaining accurate estimations. If the bandwidth is too small, only 
a few local variables will contribute to the estimation, while too high of a value can lead to 
estimations that are very close to the original values and consistently biased (Ruppert et al., 1995). 
To address this, we used the “dpill” function to select the appropriate bandwidth for our data. 

After smoothing the rainfall data, we used two different metrics to compare ERA5 and NASA 
POWER rainfall data with GMET rainfall data: the person correlation coefficient and the mean 
absolute distance (𝑀𝑀𝐺𝐺𝐷𝐷𝐼𝐼) derived from the mean absolute error. 𝑀𝑀𝐺𝐺𝐷𝐷𝐼𝐼 is expressed as: 

 𝑀𝑀𝐺𝐺𝐷𝐷𝐼𝐼 =  
1
𝑛𝑛
��𝐼𝐼𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐼𝐼𝐹𝐹𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡𝑝𝑝𝑠𝑠𝑎𝑎𝑝𝑝�
𝑖𝑖

𝑖𝑖=1

, (16) 

where 𝐼𝐼𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 represents the smooth rainfall data from GMET, and 𝐼𝐼𝐹𝐹𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡𝑝𝑝𝑠𝑠𝑎𝑎𝑝𝑝 represents the 
smooth rainfall data from either ERA5 or NASA POWER. 
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 Exploratory Analysis 
In order to compare the distribution of a variable among two or more groups, both parametric and 
non-parametric tests have been developed (Orcan, 2020). Parametric tests, unlike non-parametric 
ones, assume that the key variable is normally distributed. However, most statistical tests suffer 
from the issue of overlapping treatments that belong to different groups simultaneously (Conrado 
et al., 2017). To address this problem, the Scott-Knott test was developed as a statistical method 
to rank and compare the means of multiple groups (Jelihovschi et al., 2014). The Scott-Knott test 
is a hierarchical clustering algorithm proposed by Alastair J. Scott and Martin Knott in 1974, 
designed for situations where the groups have an equal number of observations (Jelihovschi et al., 
2014). 

In the present investigation, we will be using ANOVA with the Tukey post hoc test to evaluate the 
variability of maize yield gap across the 10 study sites and the different treatments applied. This 
choice is motivated by the uneven distribution of fertilizer treatments. To implement the ANOVA 
and Tukey post hoc test, we utilized the R packages agricolae and dplyr, which provide an efficient 
and user-friendly implementation of the algorithm. 

 Explanatory Analysis 
Here, we will explain the different approaches used to assess the impact of the independent 
variables on the yield gap. They are respectively: the random forest for the most important 
variables selection, the multicollinearity analysis between the independent variables selected, the 
construction of the ridge regression, and interpretation of the results. Although MLR could 
potentially provide a good fit to quantify the maize yield gap in our trials, it was not a suitable 
choice for our study due to the violations of the assumptions of homoscedasticity, normality, and 
non-autocorrelation of errors, even after transforming variables. As a result, we chose ridge 
regression as a more suitable approach. 

To achieve this, we focused exclusively on eight of the 10 stations, excluding Ejura and KNUST 
due to the presence of negative yield gap values. Therefore, for this yield gap analysis, these 
stations were excluded from consideration. 

3.4.3.1 Random Forest Explanation 
Random forest is an machine learning ensemble method which can solve both regression and 
classification problems (Breiman, 2001). This technique constructs some bag of decision trees, 
called “base learners” or “weak learners”, ℎ1(𝑥𝑥), …, ℎ𝐽𝐽(𝑥𝑥) (prediction of the response variable 
at 𝑥𝑥 using the 𝑗𝑗𝑡𝑡ℎ tree), and these base learners are combined to give the “ensemble predictor” 𝑓𝑓(𝑥𝑥) 
(Cutler et al., 2012; Mohapatra et al., 2020). In regression, the base learners are averaged (Cutler 
et al., 2012). The method aims to find a prediction function 𝑓𝑓(𝑀𝑀) that predicts the real-valued 
response variable Y based on the real-valued input or predictor variables 𝑀𝑀. 

The machine learning has multiple advantages, such as fast training and prediction, and can be 
used for high-dimensional problems. It can also provide measures of variable importance, missing 
value imputation and outlier detection (Cutler et al., 2012; Mohapatra et al., 2020). 
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This process is achieved by minimizing the expected value of the loss function 𝐺𝐺�𝑌𝑌,𝑓𝑓(𝑀𝑀)�: 

 𝐿𝐿𝑋𝑋𝑋𝑋 �𝐺𝐺�𝑌𝑌,𝑓𝑓(𝑀𝑀)�� (17) 

where 𝐺𝐺 is a measure of how close 𝑓𝑓(𝑀𝑀) is to 𝑌𝑌 and the subscripts the joint distribution of 𝑀𝑀 and 
𝑌𝑌. The choice of 𝐺𝐺 depends on the type of work we are doing. For the regression task: 

 𝐺𝐺�𝑌𝑌,𝑓𝑓(𝑀𝑀)� =  �𝑌𝑌 − 𝑓𝑓(𝑀𝑀)�
2
 (18) 

As said before, the final output of the model is a function of the different output of the weak 
learner’s ℎ𝐽𝐽(𝑥𝑥). This aggregation also depends on the task. For the regression: 

 𝑓𝑓(𝑥𝑥) =  
1
𝑀𝑀
�ℎ𝑗𝑗(𝑥𝑥)
𝐽𝐽

𝑗𝑗=1

 (19) 

3.4.3.2 Multicollinearity Analysis 
Before the model building, it was important to avoid multicollinearity among the covariates. 
Multicollinearity appears when there is a high degree of correlation among the predictors 
(Morales-Oñate and Morales-Oñate, 2021). To check for multicollinearity, we used the Pearson 
correlation matrix at the significance threshold of 5%. When two variables have a correlation 
higher than 85%, one of them is removed from the analysis. 

3.4.3.3 Ridge Regression  
For decades, MLR has been used in various fields to identify linear relationships in datasets. The 
standard linear model assumes that: 

 𝑦𝑦𝑖𝑖 = 𝛽𝛽1𝑥𝑥𝑖𝑖1 + ⋯+ 𝛽𝛽𝑖𝑖𝑒𝑒−1𝑥𝑥𝑖𝑖𝑒𝑒−1 + 𝛽𝛽𝑒𝑒𝑥𝑥𝑖𝑖𝑒𝑒 + 𝑒𝑒𝑖𝑖  for  𝑖𝑖 = 1, … ,𝑛𝑛 (20) 

Where 𝑛𝑛 is the sample size, 𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑒𝑒 are the explanatory variables, and 𝑦𝑦𝑖𝑖 is the response 
variable. It is based on several assumptions, including the normality of errors, no multicollinearity 
among independent variables, homoscedasticity of error variance, and independence of 
observations (Schmidt and Finan, 2018). Meeting all the assumptions required for MLR is indeed 
a significant challenge during the model building process. One of the key challenges, particularly 
in the presence of multicollinearity, has led to the introduction of alternative approaches such as 
ridge regression, Stein shrinkage, least absolute shrinkage selection operator (LASSO), and elastic 
net (R.W. Hoerl, 2020). 

A regularization term was introduced by A.E. Hoerl and Kennard (1970) in ridge regression to 
address the instability caused by multicollinearity. This regularization term is added to the least 
squares estimate, resulting in the ridge regression estimate: 

 �̂�𝛽∗ = [𝑀𝑀′𝑀𝑀 + 𝑘𝑘𝐼𝐼]−1𝑀𝑀′𝑌𝑌; 𝑘𝑘 ≥ 0 (21) 
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With 𝐼𝐼 the unit matrix, 𝑘𝑘 the family of the estimate, and 𝑀𝑀 the matrix of the covariates (Abdelgadir 
and Eledum, 2016; A.E. Hoerl and Kennard, 1970). The ridge regression estimate can also be 
expressed as a function of the ordinary least squares estimate ��̂�𝛽�: 

 �̂�𝛽∗ = �𝐼𝐼𝑒𝑒 + 𝑘𝑘(𝑀𝑀′𝑀𝑀)−1�
−1
�̂�𝛽;𝑘𝑘 ≥ 0 (22) 

By incorporating this small positive value into the diagonal, we achieve a less biased estimate that 
is more desirable than the ordinary least squares estimate, as it is closer to the true value. 

3.4.3.4 Quality Evaluation of the Model 
After building the MLR model, we evaluated the assumptions of the linear regression model, 
which included the normality of errors, homoscedasticity, independence of errors, linear 
relationship between the dependent variable and covariates, and absence of multicollinearity 
(Poole and O'Farrell, 1971; Schmidt and Finan, 2018). The Breusch-Pagan test was used to assess 
homoscedasticity with the null hypothesis “H0: the variances are equal,” the Shapiro-Wilk test for 
normality with the null hypothesis, “the distribution of the variable is normal,” and the Durbin-
Watson test for independence of errors with the null hypothesis “the independence of errors” (Palm 
and Iemma, 2002). After assessing all assumptions for the 𝑀𝑀𝐺𝐺𝐼𝐼, we used performance metrics of 
linear regression, including the root mean square error (𝐼𝐼𝑀𝑀𝐹𝐹𝐿𝐿, expressed in Equation 23), 
coefficient of determination (𝐼𝐼2, expressed in Equation 24), and adjusted coefficient of 
determination (𝐼𝐼2𝑎𝑎𝑑𝑑𝑗𝑗𝑎𝑎𝑠𝑠𝑡𝑡𝑒𝑒𝑑𝑑, expressed in Equation 25), to determine how much the covariates 
explained the variance of the maize yield gap. While 𝐼𝐼2 overestimates the amount of variance 
explained by the covariates and is sensitive to the number of covariates used in the model, for this 
study we used the 𝐼𝐼2𝑎𝑎𝑑𝑑𝑗𝑗𝑎𝑎𝑠𝑠𝑡𝑡𝑒𝑒𝑑𝑑, which is more robust (Karch, 2020). 

 𝐼𝐼𝑀𝑀𝐹𝐹𝐿𝐿 =  �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑖𝑖

𝑖𝑖=1

 (23) 

 

 𝐼𝐼2 = 1 −  �
(𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)2

(𝑦𝑦𝑘𝑘 − 𝑦𝑦�)2

𝑖𝑖

=1

 (24) 

 

 𝐼𝐼2𝑎𝑎𝑑𝑑𝑗𝑗𝑎𝑎𝑠𝑠𝑡𝑡𝑒𝑒𝑑𝑑 = 1 − �
𝑛𝑛 − 1

𝑛𝑛 − 𝑝𝑝 − 1
� × (1 − 𝐼𝐼2) (25) 

where 𝑦𝑦𝑘𝑘 is the observed value of the dependent variable, 𝑦𝑦�𝑘𝑘 is the predicted value of the dependent 
variable, 𝑛𝑛 is the total sample size, and 𝑝𝑝 is the number of predictors. 



24 

CHAPTER 4: RESULTS AND DISCUSSION 

 Results of Our Analysis 
This section provides an overview of the findings derived from our analysis. 

 Parametrization of LINTUL-2 Maize 
4.1.1.1 Rainfall Comparison 
In this analysis, we conducted a comparison of the rainfall data from ERA5 and NASA POWER 
for 2020, 2021, and 2022 with the actual rainfall values obtained from the GMET at three locations: 
Tamale, Ejura, and Kumasi. The purpose of this comparison was to determine which platform’s 
rainfall predictions were closest to the observed values, enabling us to select the most suitable 
platform for downloading random points weather data. 

4.1.1.1.1 Comparison of the Smooth Distributions 
Figure 5 illustrates the comparison of smooth daily rainfall data for the year 2020 obtained from 
GMET, ERA5, and NASA POWER. At the Tamale location, the smooth rainfall distribution from 
NASA POWER closely resembles that of GMET, showing a positive correlation coefficient of 
0.911. Moreover, the mean absolute distance between these two distributions is 0.734, which is 
half of the mean absolute distance observed between GMET and ERA5 smooth rainfall data. In 
contrast, at Kumasi, the correlation coefficients between ERA5, NASA POWER, and GMET are 
nearly identical. However, the mean absolute distance between ERA5 and GMET smooth rainfall 
is 1.231, which is approximately three-fifths of the mean absolute distance between GMET and 
NASA POWER smooth rainfall. Lastly, at Ejura, the NASA POWER smooth rainfall exhibits 
higher correlation with GMET smooth rainfall. Nevertheless, the mean absolute distance between 
ERA5 and GMET smooth rainfall is smaller than that observed between NASA POWER and 
GMET smooth rainfall. 

 

Figure 5. Comparison of 2021 daily smooth rainfall data from GMET, ERA5, and NASA 
POWER datasets for two locations: (A) Tamale, (B) Ejura, and (C) Kumasi 
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Figure 6 depicts the comparison of smooth daily rainfall data from NASA POWER, GMET, and 
ERA5 for the year 2021. In the Tamale location, the correlation coefficient between GMET and 
ERA5 smooth rainfall and GMET and NASA smooth rainfall is nearly identical, indicating similar 
trends in all these smooth data. Although there is a slightly smaller mean absolute distance between 
GMET and NASA POWER smooth rainfall, this metric remains very similar, differing only by a 
few dozen for ERA5 and NASA POWER. 

 

Figure 6. Comparison of 2020 daily smooth rainfall data from GMET, ERA5, and NASA 
POWER datasets for two locations: (A) Tamale and (B) Ejura 

Figure 7 illustrates the comparison of smooth daily rainfall data between ERA5, NASA POWER, 
and GMET. In the regions of Ejura and Kumasi, we observed that ERA5 and GMET smooth 
rainfall data show a stronger correlation and have a lower mean absolute distance compared to 
NASA POWER and GMET smooth rainfall. 
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Figure 7. Comparing 2022 daily smooth rainfall data from GMET, ERA5, and NASA 
POWER datasets for two locations: (A) Ejura, and (B) Kumasi 

Based on our observations, we have noted that in three out of the seven assessments conducted on 
locations where we have complete rainfall data from GMET, ERA5 smooth rainfall exhibits a 
stronger correlation with GMET smooth rainfall. However, it is crucial to consider the mean 
absolute distance as a more significant metric, as it provides insights beyond the direction of the 
trend. According to the mean absolute distance analysis, ERA5 smooth rainfall is found to be 
closer to GMET smooth rainfall than NASA POWER in four out of seven assessments. This 
finding is consistent with the results obtained by Gleixner et al. (2020), who reported that ERA5 
significantly reduced the bias in temperature and rainfall data compared to the previous version, 
ERA-Interim, across the African continent. We have therefore decided to use GMET data where 
available and ERA5 data where no data is available. 

4.1.1.1.2 Simulation Results 
In addition to rainfall, soil properties, such as soil water content at saturation, field capacity, and 
wilting point, play a crucial role in determining the available water for plant growth. Due to data 
limitations, we relied on existing literature, particularly the work by Saxton et al. (1986) and soil 
data provided by ISRIC (Leenaars et al., 2018; Poggio et al., 2021). Figure 8 illustrates the 
simulation results of maize water-limited yield at ten study sites using weather data from ERA5, 
NASA POWER, and a combination of ERA5 and GMET rainfall, along with soil parameters from 
the aforementioned sources. 

Upon analysis, we observe that when employing the soil parameters from Saxton et al. (1986), the 
predicted maize water-limited yield exceeds 6 mt ha-1 at three, five, and four locations for 
GMET+ERA5, NASA POWER, and ERA5 weather data, respectively. Conversely, when utilizing 
the ISRIC parameters, the predicted maize water-limited yield exceeding 6 mt ha-1 is only found 
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at three, four, and three locations for GMET+ERA5, NASA POWER, and ERA5 weather data, 
respectively. Application of the Saxton et al. (1986) parameters results in predicted maize water-
limited yields of greater than 4-6 mt ha-1, as estimated by the International Food Policy Research 
Institute (IFPRI ,2014) at many locations. However, due to the use of only soil texture in our trials 
to determine soil water characteristics from (Saxton et al., 1986) and considering that ISRIC data 
originates from spatial analysis of soil characteristics, we have chosen to prioritize the ISRIC data 
for our simulations.  

 

Figure 8. LINTUL-2 simulation results comparing different weather data sources and soil 
parameters: (A) GMET and Saxton, (B) NASA POWER and Saxton, (C) ERA5 
and Saxton, (D) GMET and ISRIC, (E) NASA POWER and ISRIC, and 
(F) ERA5 and ISRIC 

4.1.1.2 Calibrated Values Retained 
Table 5 displays the calibrated values used in this study for simulating the water-limited potential 
yield of maize in Ghana.  
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Table 5. Calibrated parameters to simulate the water-limited potential yield of maize in 
Ghana 

Parameters Original Value Source Recalibrated 
Value Source 

Tsum Maturity 1750 GDD Farré et al. (2000) 1796 Boullouz et al. (2022) 
Tsum Anthesis 970 GDD Farré et al. (2000) 1027 Boullouz et al. (2022) 

SLA 0.016 Farré et al. (2000) 0.032 
Srivastava et al. 

(2020) 
Partitioning coefficient of dry matter Farré et al. (2000)  Boullouz et al. (2022) 

RGRL 0.009 °C d-1 Farré et al. (2000) 0.02 °C d-1 
Srivastava et al. 

(2020) 

ROOTDM 1.2 m 
Spitters and 

Schapendonk 
(1990) 

1 m 
Srivastava et al. 

(2020) 

WCSAT, 
WCFC, WCWP 

0.55, 0.36, and 
0.23, respectively 

Spitters and 
Schapendonk 

(1990) 
See table 3 ISRIC 

WCSAT, water content at saturation; WCFC, water content at field capacity; WCWP, water content at 
wilting point. 

 Yield Observations in FERARI Field Experiments 
Figure 9 presents the observed and model-predicted water-limited yields after simulation. The 
LINTUL-2 model predicts a range of water-limited potential yields from 1.4 to 7.43 mt ha-1. The 
highest predicted yield is observed in Gbalahi, located in the northern region of Ghana. This value 
is slightly higher than the 4-6 mt ha-1 found by IFPRI for Ghana (IFPRI, 2014; Scheiterle and 
Birner, 2018). The other two northern locations also have yields greater than 5 mt ha-1. On the 
other hand, the smallest predicted yield is observed in Mampong, one of the towns in the Ashanti 
region (Figure 9).  

Across the study sites, the model predicts higher water-limited yields compared to the observed 
yields in eight locations (Figure 9). However, at Ejura and KNUST, the predicted yields are lower 
than the yields observed in the field, which suggests that our model may not generalize well or that 
there might be inaccuracies in the weather data for these specific locations. This discrepancy 
should not occur unless the rainfall data are not accurate, as the model assumes all parameters to 
be optimum except for water availability. In the following sections, we will investigate the reasons 
behind these unexpected results in these locations. 
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Figure 9. Water-limited potential yield and observed maize yield by study site 

4.1.2.1 Ashanti Anwomaso 
The predicted potential water-limited yield at Ashanti Anwomaso is 4.98 mt ha-1 (Figure 9). 
Figure 10 illustrates that the leaf area index (LAI) of maize at this location reaches 3.6, which is 
comparable to the LAI under irrigation conditions. This can be attributed to the favorable 
distribution of rainfall during the vegetative period, amounting to approximately 300 mm. This 
rainfall amount is not far from the required water for maize cultivation, estimated to be between 
450 and 600 mm, according to Du Plessis (2003). The crop rainfed transpiration rate remains 
consistent with the transpiration rate under irrigation conditions until reaching an asymptotic 
threshold after 65 days post-sowing. The rapid attainment of this threshold compared to the plant’s 
transpiration under irrigation can be attributed to the limited rainfall received during the period 
from 65 to 100 days after sowing. As a result, both the crop rainfed evapotranspiration (comprising 
maize transpiration and soil evaporation) and the water-limited potential yield are reduced, 
estimated at 8.49 mt ha-1 by Boullouz et al. (2022). 
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The LAI and TRAIN curves for irrigation and rainfed conditions overlap. LAI, Leaf Area 
Index; TRAN, Transpiration; TRAIN, Total Rain; and EVAP, Evaporation. 

Figure 10. LAI (A), TRAN (B), TRAIN (C), and EVAP (D) simulation results by LINTUL-2 
at Ashanti Anwomaso 

4.1.2.2 Ashanti Ayeduase 
At Ashanti Ayeduase, the predicted potential water-limited yield is 4.15 mt ha-1 (Figure 9), which 
is 0.84 mt ha-1 lower than the observed yield at Anwomaso. However, the growth patterns of maize 
at Ayeduase, as depicted in Figure 11, are quite similar to those observed at Anwomaso, with the 
only notable difference being the crop transpiration. At Ashanti Anwomaso, the crop rainfed 
transpiration reaches 150 mm, while at Ayeduase, it is approximately 135 mm. This difference can 
be attributed to the slightly lower water-holding capacity of the soil at Ayeduase compared to 
Anwomaso, with the latter being 2% higher (Zhang et al., 2021) (Table 3). Consequently, despite 
experiencing similar rainfall patterns after 65 days post-sowing, the soil at Anwomaso can retain 
more water, which the maize crop can utilize for transpiration and other physiological needs. This 
disparity in water availability accounts for the difference in yield between the two locations (He 
and Wang, 2019) and aligns with the findings of Boullouz et al. (2022), who reported a yield of 
8.28 mt ha-1 for the same site. 
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The LAI and TRAIN curves for irrigation and rainfed conditions overlap. LAI, Leaf 
Area Index; TRAN, Transpiration; TRAIN, Total Rain; and EVAP, Evaporation. 

Figure 11. LAI (A), TRAN (B), TRAIN (C), and EVAP (D) simulation results by LINTUL-2 
at Ashanti Ayeduase 

4.1.2.3 Ejura 
The LAI at Ejura reaches a value of 4, with a slight difference compared to the LAI of maize under 
irrigation conditions (Figure 12). This discrepancy can be attributed to the relatively low rainfall 
between 15 and 25 days after sowing. However, the crop faced a severe drought from 42 days after 
sowing until maturity. As a result, the yield at Ejura was significantly lower at 1.47 mt ha-1 
(Figure 9), whereas LINTUL-1 predicts a potential yield of 8.27 mt ha-1 for this location (Boullouz 
et al., 2022). This highlights the critical role of water availability during the grain filling period 
compared to the vegetative period. Despite the lower LAI observed in the Ashanti locations 
compared to the one at Ejura, which can be attributed to higher rainfall during the vegetative phase 
in Ejura, the yield in the Ashanti regions surpasses that of Ejura. 
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The TRAIN curve for irrigation and rainfed conditions overlap. LAI, Leaf Area Index; 
TRAN, Transpiration; TRAIN, Total Rain; and EVAP, Evaporation. 

Figure 12. LAI (A), TRAN (B), TRAIN (C) and EVAP (D) simulation at Ejura by LINTUL-2 

4.1.2.4 Gbalahi, Kpalga, and Nyankpala 
Gbalahi, Kpalga, and Nyankpala are three locations situated in the northern part of the country 
(Figure 2). The LAI values for these trials are 4, 3, and 2.7, respectively (Figure 13). Despite 
experiencing a short drought period during the vegetative stage, ranging from the 10th to the 40th 
day after sowing at Gbalahi, the 16th to the 50th day after sowing at Kpalga, and the 21st to the 50th 
day after sowing at Nyankpala, these locations receive ample rainfall throughout the agricultural 
season, with precipitation exceeding 500 mm (Table 3). This favorable rainfall pattern contributes 
to the development of maize crops at these locations. The temporary drought during the vegetative 
stage leads to a reduction in the crop rain fed LAI, preventing it from reaching the levels observed 
in maize under irrigation conditions. Additionally, the crop experiences lower transpiration rates 
at Nyankpala and Kpalga due to the lower water availability during this period. However, rainfall 
resumes after this brief dry spell and continues until the maturity of the maize crops at all three 
locations. As a result, at Gbalahi, Kpalga, and Nyankpala, the rainfed yields reached 7.43, 6.04, 
and 5.03 mt ha-1 respectively (Figure 9). It is worth noting that although the crop rain fed LAI at 
Nyankpala is lower compared to Ejura, Ashanti Ayeduase, and Ashanti Anwomaso, LINTUL-2 
predicts a higher yield for this location. This highlights the maize’s resilience to drought during 
the vegetative period compared to the grain filling period (McMillen et al., 2022). McMillen et al. 
(2022) also highlight the effect of the variety on maize’s ability to withstand drought. The presence 
of sufficient rainfall in these northern locations ensures an adequate soil moisture level, facilitating 
evaporation, particularly at Nyankpala and Kpalga, where crop transpiration rates are 
comparatively lower.  
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The TRAIN curve for irrigation and rainfed conditions overlap. LAI, Leaf Area Index; 
TRAN, Transpiration; TRAIN, Total Rain; and EVAP, Evaporation. 

Figure 13. LAI (A), TRAN (B), TRAIN (C), and EVAP (D) simulation results by LINTUL-2 
at (I) Gbalahi, (II) Kpalga, and (III) Nyankpala 

4.1.2.5 KNUST 
At the KNUST location, the water-limited yield is estimated to be 3.2 mt ha-1 (Figure 9). The crop 
rainfed LAI reaches 3.6, which is similar to the LAI observed for maize under irrigation conditions, 
as shown in Figure 14. However, 62 days after sowing, the transpiration of the crop under water-
limited conditions significantly decreases due to the limited rainfall received from the 56th day 
after sowing to the 100th day after sowing. This prolonged period of reduced rainfall adversely 
affects both soil evaporation and crop yield. As a result, the reduced soil moisture availability 
during this critical period leads to a decrease in crop transpiration, causing a decline in the water-
limited yield. The observed water limited yield of 3.2 mt ha-1 is lower compared to the potential 
value of 6.76 mt ha-1 reported by Boullouz et al. (2022) for the same site. 
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The LAI and TRAIN curves for irrigation and rainfed conditions overlap. LAI, Leaf Area 
Index; TRAN, Transpiration; TRAIN, Total Rain; and EVAP, Evaporation. 

Figure 14. LAI (A), TRAN (B), TRAIN (C), and EVAP (D) simulation results by LINTUL-2 
at KNUST 

4.1.2.6 Mampong 
During the vegetative stage, Mampong experiences favorable rainfall distribution, with a LAI 
value of 3.6, which is very close to the rainfall received by maize under irrigation conditions 
(Figure 15). However, 35 days after sowing, the daily rainfall distribution significantly decreases, 
leading to a collapse in crop transpiration and resulting in a lower yield of 1.40 mt ha-1 (Figure 9). 

This observation in Mampong suggests that maize is particularly sensitive to water stress during 
the grain filling period (Barutçular et al., 2016). Unlike Nyankpala, where the crop showed a higher 
tolerance to drought during the vegetative stage, the maize in Mampong demonstrates a greater 
vulnerability to water stress during the critical grain filling period. This emphasizes the importance 
of sufficient water availability during this stage to ensure optimal crop performance and maximize 
yield potential (McMillen et al., 2022). 
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The TRAIN curve for irrigation and rainfed conditions overlap. LAI, Leaf Area Index; 
TRAN, Transpiration; TRAIN, Total Rain; and EVAP, Evaporation. 

Figure 15. LAI (A), TRAN (B), TRAIN (C), and EVAP (D) simulation results by LINTUL-2 
at Mampong 

4.1.2.7 Sunyani 
Figure 16 illustrates the simulation results at Sunyani. During the initial 25 days after sowing, 
Sunyani receives a relatively good rainfall distribution. However, the subsequent period 
experiences a significant scarcity of rain until it resumes 63 days after sowing. It is important to 
note that this trial has the lowest cumulative rainfall value among all the trials conducted. As a 
consequence, there is a reduction in evapotranspiration at this location, leading to a decrease in the 
water-limited yield, which is predicted to be 3.12 mt ha-1 (Figure 9). 
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The TRAIN curve for irrigation and rainfed conditions overlap. LAI, Leaf Area Index; TRAN, 
Transpiration; TRAIN, Total Rain; and EVAP, Evaporation. 

Figure 16. LAI (A), TRAN (B), TRAIN (C), and EVAP (D) simulation results by LINTUL-2 
at Sunyani  

4.1.2.8 Wenchi 
At Wenchi, the water-limited yield reaches 6.73 mt ha-1, the second highest yield among our trials 
(Figure 17). Except a little drought from the 5th to 14th days after sowing at this location, the rainfall 
distribution is quite good either during the vegetative stage or the grain filling stage. This results 
in an LAI and transpiration rate of maize quite similar to the one of maize in irrigation conditions. 
For the evaporation of soil, it collapses compared to the one in irrigation conditions. This could be 
explained by the fact that a part of the rainfall is lost either by leaf interception or runoff/drainage.  
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The TRAIN curve for irrigation and rainfed conditions overlap. LAI, Leaf Area Index; TRAN, 
Transpiration; TRAIN, Total Rain; and EVAP, Evaporation. 

Figure 17. LAI (A), TRAN (B), TRAIN (C), and EVAP (D) simulation results by LINTUL-2 

 Water Content 
Figure 18 shows the soil water content during the simulation period across trial locations. It is 
noteworthy that the soil water-holding capacity is higher at Gbalahi, Ashanti Anwomasso, 
Sunyani, Wenchi, and Ashanti Ayeduase compared to other locations. At Gbalahi, where the 
highest yield of 7.43 mt ha-1 was recorded, the soil water content remains mostly above the 
management allowable depletion (MAD), representing the critical threshold for water stress and 
growth reduction in crops (Datta et al., 2017). However, the MADD temporarily declines below 
the MAD approximately 36 days after sowing. This indicates that, even during the short period of 
drought observed from the 10th to 40th days after sowing, the soil retained sufficient water, to 
prevent water stress in maize at this location. On the other hand, at Ashanti Anwomaso, Ashanti 
Ayeduase, Sunyani, and Wenchi, the soil water content falls below the MAD after 72, 65, 40, and 
80 days after sowing, respectively, resulting in water stress for the maize crop. However, except 
for Ashanti Ayeduase, the soil water content does not reach the water content at wilting point 
(WCWP). This discrepancy could explain the difference between the water-limited yield found 
and the potential yields reported by Boullouz et al. (2022) at those locations. Datta et al. (2017) 
reveal that soil water content below this threshold could induce a growth reduction of the crop and 
the death of the crop. 

At Ejura and KNUST, where the water-limited yields are lower than those observed in the field, 
the soil water content falls below the MAD at 45 and 65 days after sowing, respectively. From that 
moment, maize experiences water stress at these locations and then becomes more pronounced at 
Ejura, where the soil water content falls significantly below the wilting point. Similar observations 
are made at KNUST, where the soil water content falls below the WCWP before rising again above 
the WCWP and the MAD at 100 days after sowing. These findings elucidate the lower yields at 
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these locations, which are even below the observed field values. Mampong, where the lowest yield 
of 1.40 mt ha-1 was recorded, exhibits one of the lowest soil water-holding capacities (5%). 
Furthermore, the soil water content falls below the MAD, leading to water stress in maize from 
40 days after sowing. It even approaches or falls below the WCWP between 58 and 82 days after 
sowing. 

Overall, the variations in soil water content across the trial locations have a significant impact on 
maize growth and yield, highlighting the importance of adequate soil water availability for optimal 
crop performance. 

 
MAD, Management Allowable Depletion; WCFC, Water Content at Field Capacity; 
WCWP, Water content at Wilting Point 

Figure 18. Daily soil water content variation across the study sites 
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 Photosynthetically Active Radiation by Study Site 
Figure 19 illustrates the distribution of PAR across the study sites. The highest levels of IPAR 
were observed in Kpalga, Gbalahi, and Wenchi, with values of 981.42, 974.37, and 965.38 Mj m-2, 
respectively. Surprisingly, even in locations like Mampong and Ejura, where the simulated water-
limited yield is relatively low, the IPAR values exceeded 930 Mj m-2. These values are higher than 
those observed in the Ashanti locations of KNUST and Sunyani, where water-limited yields are 
higher than those of Ejura and Mampong. These findings emphasize the significant influence of 
soil parameters and rainfall on the yield predictions made by the LINTUL-2 model. 

 

Figure 19. Photosynthetically Active Radiation by study site 

 Quantifying the Yield Gap of Maize in FERARI Locations 
The locations of Ejura and KNUST were excluded from the yield gap analysis due to the lower 
water-limited yields of maize compared to the observed field values, which leads to a negative 
yield gap. We believe there may be a problem with the rainfall distribution or soil parameters of 
these trials. Figure 20 illustrates the variation in yield gap across the study sites. The water-limited 
yield gap is quantified as a percentage of the potential water-limited yield, ranging from 18.3% to 
74.3%.  

Based on the results of the ANOVA and Tukey post hoc test at a 5% significance level, significant 
differences were observed in the mean values of the yield gap across the study sites. Consequently, 
the locations were categorized into four distinct groups based on their yield gap values. Gbalahi is 
identified as the location with the highest yield gap values, which is understandable considering 
its highest water-limited yield among all the locations. Conversely, Mampong is categorized as 
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the location with the lowest yield gap values, indicating that the water-limited yield at this location 
is relatively close to the observed field yield. 

 
The sites grouped together are labeled with the same letter(s). 

Figure 20. Yield gap variation per study site 

Figure 21 displays the variation in the yield gap based on different fertilizer treatments. From this 
figure, we observe that the results of the ANOVA and Tukey post hoc test indicate a significant 
difference in the mean yield gap depending on the fertilizer treatment applied, with a threshold of 
5%. Specifically, fertilizer treatments involving NPK+Zn and NPK+Zn+S exhibit the lowest 
maize yield gap, showing the importance of micronutrients and secondary nutrients (Kugbe et al., 
2019). However, treatments involving the secondary nutrient sulfur and certain macronutrients 
(NPKS, NPS, PKS, NKS, and PS) result in the highest yield gap. Adding a mixture of secondary 
nutrients or micronutrients does not always result in a lower yield gap than that obtained with a 
single secondary nutrient or micronutrient. For example, the use of NPK+Zn+Fe, NPK+Zn+S, or 
NPK+Zn+S+Fe treatments does not result in a statistically different yield gap to that of the 
treatment involving only zinc as micronutrient and macronutrient. Nevertheless, given that both 
location and fertilizer treatment have some impact on the maize yield gap, it would be interesting 
to see the effect when both factors are considered. This could lead to better conclusions. 
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The treatments grouped together are labeled with the same letter(s). 

Figure 21. Yield gap variation per treatment applied 

Figure 22 depicts the variation in yield gap by study site and fertilizer treatment. The results of the 
ANOVA and Tukey post hoc test, conducted at a significance level of 5%, indicate that there is no 
significant difference in yield gap among the different fertilizer application treatments at Ashanti 
Anwomaso, Ashanti Ayeduase, Kpalga, and Mampong. In most trials, the control treatment group 
exhibits the highest yield gap value, while the treatments with NPK+S or NPK+Zn exhibit the 
lowest yield gap across the various locations. However, at Gbalahi, where the highest water-
limited yield is observed, the Anova and Tukey post hoc test reveal a significant difference in the 
mean yield gap values among the applied treatments. The NPK, NPS, and NPK+S treatments 
perform well at this location, resulting in the group with the lowest yield gap. Overall, it is evident 
that the treatment involving the sulfur nutrient consistently leads to the group with the lowest yield 
gap across the different locations. 
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The treatments grouped together are labeled with the same letter(s).  

Figure 22. Yield gap variation by study site and treatment applied: (A) Ashanti Anwomaso, 
(B) Ashanti Ayeduase, (C) Gbalahi, (D) Kpalga, (E) Mampong, (F) Nyankpala, 
(G) Wenchi, and (H) Sunyani 
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 Explaining the Maize Yield Gap 
To better understand the impact of fertilizer application on closing the yield gap, additional 
covariates were added to the 11 retained after the recursive feature selection (Table 2), such as the 
amount of zinc applied (Zn_applied), amount of iron applied (Fe_applied), amount of potassium 
applied (Potasum_applied), and amount of sulfur applied (S_applied). This micronutrients have 
been identified as important factors for maize yield gap closure in Ghana (Kugbe et al., 2019). 

Figure 23 presents the correlation matrix of the relevant drivers that were retained. Correlation 
between covariates in a regression analysis can introduce instability in the model (Abdelgadir and 
Eledum, 2016). The correlation matrix indicates that numerous variables are significantly 
correlated to each other at a significance level of 5%. For instance, the soil carbon content and soil 
organic matter are highly positively correlated, with a Pearson correlation coefficient of 1. 
Similarly, the base saturation and EA_meq_100g are strongly negatively correlated, with a Pearson 
correlation coefficient of -0.88. To avoid multicollinearity in the model, one variable from each 
correlated pair with a high Pearson correlation coefficient should be removed. To determine which 
variables to remove, the variable importance of the best model obtained after hyperparameter 
tuning was examined. 
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Figure 23. Correlation matrix of the relevant drivers retained 

Figure 24 displays the feature importance of the model based on the optimum parameters and 
selected variables. From the feature importance plot, it can be observed that the most important 
drivers of the yield gap in the trials are the soil organic matter, soil carbon content, base saturation, 
and soil nitrogen content, explaining 13.81%, 13.80%, 11.56% and 10.25%, respectively, of the 
variability in maize yield gap under water-limited conditions. 

On the other hand, the amount of iron applied appears to be less relevant in explaining the yield 
gap in the trials. Therefore, it can be excluded from the analysis. Additionally, since the 
EA_meq_100g and Soil_C variables are relatively less important compared to the BS and 
Soil_OM variables, they will also be removed from the analysis. The correlation matrix indicates 
that the information conveyed by EA_meq_100g and Soil_C is already captured by BS and 
Soil_OM, as they exhibit a high and significant positive correlation. 
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Figure 24. Importance of the covariates in explaining yield gap 

The random forest regression model, using the retained covariates, demonstrates a strong 
performance in explaining 87% of the yield gap variability in the trials, with a RMSE of 
472.63 kg ha-1. This indicates that the model is highly effective in predicting the yield gap in the 
trials. 

Figure 25 illustrates the relationship between the yield gap predicted by the model and the observed 
yield gap. The regression line closely aligns with the one-to-one line, indicating the model’s 
accuracy in predicting the yield gap. However, as the random forest is considered a black box 
machine learning model, its interpretability is limited. In an attempt to gain a better understanding 
of the influence of each driver on the predicted yield gap, an MLR was initially performed. 
However, the validity assumptions of the MLR model, including normality, homoscedasticity, and 
absence of autocorrelation in errors, were not met. 

Due to these limitations, a ridge regression was conducted to determine the direction of the impact 
of each independent variable on the predicted yield gap. While this approach does not provide 
detailed insights into the magnitude or significance of the effects, it helps identify the general trend 
and direction of the influence of each variable on the predicted yield gap. 
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The red line corresponds to the regression line and the black line to the one-to-one line. 

Figure 25. Random forest accuracy in explaining the yield gap using soil and fertilizer 
variables 

Table 6 shows the results of the ridge regression of the predicted yield gap, obtained from the 
random forest model, on the covariates. The resultant model was able to explain 97.57% of the 
variability of the predicted yield gap by the RF, with a RMSE of 295.49 kg ha-1. Based on the 
results, we observe that, at a significance level of 5%, an increase in nitrogen application, soil 
nitrogen content, soil organic matter, phosphorus application, base saturation, potassium 
application, and sulfur application lead to a reduction in the yield gap (Table 6). This suggests that 
higher levels of these factors are associated with improved yield performance and closing of the 
yield gap. On the other hand, an increase in soil potassium content, effective cation exchange 
capacity, soil zinc content, soil iron content, and zinc application are associated with an increase 
in the yield gap. This implies that higher levels of these factors may contribute to a wider gap 
between potential and actual yields. 
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Table 6. Results of the ridge regression of the predicted yield by the random forest on the 
covariates 

Covariate Estimate Std. Error T value p-value 
Intercept 0.00 0.01 0.01 >0.05 

N_applied -0.16 0.02 -8.29 <0.05 
Soil_N -1.05 0.03 -41.83 <0.05 

Soil_K_me_100g 0.60 0.02 32.15 <0.05 
eCEC_meq_100g 0.26 0.02 17.40 <0.05 

Soil_OM -0.40 0.01 -37.19 <0.05 
Soil_Zn 0.53 0.02 30.67 <0.05 
Soil_Fe 0.03 0.01 2.55 <0.05 

Pho_applied -0.06 0.01 -5.92 <0.05 
BS -0.14 0.02 -5.56 <0.05 

Potasum_applied 0.00 0.01 0.10 >0.05 
Zn_applied 0.01 0.01 1.19 >0.05 
S_applied -0.02 0.01 -2.60 <0.05 

 

 Spatial Analysis of Maize Water-Limited Potential Yield and 
Yield Gap in Ghana 

Figure 26 provides an insightful overview of the spatial distribution of maize water-limited 
potential yield and yield gap across Ghana. Note that larger areas without data points are due to 
nature reserves or waterbodies. We conducted our analysis on 2,236 randomly selected points, 
revealing a considerable variation in water-limited potential yield, ranging from 0.6 to 8.7 mt ha-1. 
Consequently, the yield gap exhibited a range from 0.2 to 7.8 mt ha-1. 

The spatial representation of water-limited potential yield and yield gap adheres to Tobler’s First 
Law of Geography, affirming that everything is interrelated, with nearby locations displaying 
higher correlation than distant ones (Tobler, 1970). Notably, the plot showcases a few instances 
where points with significant disparities in potential yield or yield gap overlap. This observation 
reinforces the suitability of our points for interpolation purposes.  
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Figure 26. Overview of the spatial distribution and variability of the maize water-limited 
potential yield and yield gap in Ghana 

Figure 27 illustrates the semivariograms resulting from the ordinary kriging interpolation for maize 
water-limited potential yield and yield gap. Analyzing this plot, we observed that the interpolation 
for maize water limited potential yield exhibits a range of 75,000 meters (m), while for the yield 
gap, the range is 55,000 meters. These ranges imply a spatial autocorrelation of points within 
distances of less than 75 km for potential yield and 55 km for yield gap interpolation. Beyond these 
distances, two points are no longer correlated. 

The nugget and sill values of our semivariograms are 0.2 and 0.72 for potential yield, and 0.25 and 
0.94 for yield gap, respectively. These values suggest that there are not substantial jumps between 
neighboring points due to their relatively small magnitude. However, it is worth noting that our 
semi variogram displays another positive slope after a distance of 300,000 m, indicating that two 
points with a distance greater than 300 km also exhibit spatial correlation. 
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Figure 27. Semivariograms of the potential yield and yield gap 

Figure 28 displays the map generated through ordinary kriging, showcasing the distribution of 
water-limited yield and yield gap for maize. The regions of Upper West, West Savannah, and the 
eastern part of the Eastern region exhibit the highest water-limited potential yield, surpassing 
6 mt/ha. Conversely, the southern parts of Volta, Greater Accra, and Upper East regions 
demonstrate lower water-limited potential yield, ranging between 1.7 and 3 mt ha-1. These 
variations can be attributed to the significant rainfall amounts, exceeding 357 mm, recorded at the 
selected random points in these areas. 

The yield gap map, varying between 0.64 and 7.58 mt ha-1, reveals a correlation between higher 
water-limited yield areas and larger yield gaps. This suggests that despite the higher potential in 
these locations, on-farm performance falls short, resulting in significant yield gaps. Additionally, 
a notable observation is that the yield gap in the southern part of Ghana is generally lower than 
that in the northern regions. 
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Figure 28. Map of water-limited yield and yield gap of maize based on ordinary kriging 
at a resolution of 2 km 

 Discussion of Results 
 Potential Yield of Maize in Ghana 

The water-limited yield of maize in our study trials ranged from 1.4 to 7.43 mt ha-1, with the highest 
yield observed in Gbalahi, located in Tamale metropolitan district, in the northern region of Ghana. 
This finding aligns with the study by MacCarthy et al. (2018),who reported that the mean water-
limited yield in Tamale, a district within the northern region, varied between 3,262 kg ha-1 and 
4362 kg ha-1 during different planting windows. Our results also indicated a positive correlation 
between water-limited yield and IPAR, supporting the findings of Gurjar et al. (2017), who 
emphasized the role of radiation in crop growth and photosynthesis. 

However, we observed that the simulated water-limited yield by the LINTUL-2 model is more 
influenced by water availability rather than intercepted PAR. This is expected, considering the 
crucial role of water availability during the grain filling stage of maize. Khoshvaghti et al. (2014) 
further confirmed this relationship in their study, demonstrating that water stress during the grain 
filling stage can negatively impact grain length, cob diameter, grain volume, and ultimately grain 
yield in maize. Barutçular et al. (2016) and (McMillen et al., 2022) also emphasized on the same 
point in their studies. 

The maize water-limited yield map displays significant differences compared to LINTUL-1 results 
in certain regions, while showing similarities in others. In the northern part of the country, which 
demonstrated a higher potential yield of around 8 mt ha-1 with LINTUL-1, there is now more 
variability in water-limited yield across the regions. Specifically, the Upper West and Western 
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Savannah regions maintain a high potential yield of 8 mt ha-1 with LINTUL-2. However, in the 
Upper East, North East, and Eastern Northern regions, there is a decrease in potential yield, 
averaging around 6 mt ha-1 and dropping to 3 mt ha-1 in the eastern part of Upper East. Regions 
such as Western, Central, Western North, Ahafo, Ashanti, and South Brong Ahafo, where 
LINTUL-1 predicted a potential yield between 5.4 and 6 mt ha-1, exhibit a water-limited yield of 
4-5 mt ha-1 with LINTUL-2. In the southern part of Volta and the eastern part of Greater Accra, 
where the water-limited yield is around 1.5 mt ha-1, the difference was significant, with a 5 mt ha-1 
lower yield than that predicted by LINTUL-1. For the remaining parts of the country, both 
LINTUL-1 and LINTUL-2 predict yields within the same range of 6.5 mt ha-1.  

The slight variation between LINTUL-1 and LINTUL-2 results across the country could be 
attributed to the high rainfall amount in the selected random points, exceeding 357 mm. As the 
only difference between the two crop models is the integration of soil water balance in LINTUL-2, 
no significant difference in the results would be observed if the rainfall distribution is good. 
However, other factors may contribute to the variation, such as the suitability of the calibrated 
values to the entire country. For instance, crop partitioning coefficients, Tsum to maturity, and 
anthesis values calibrated at Ejura in the Transitional zone may vary in other AEZs. Additionally, 
Yamba et al. (2023) highlighted the variability of rainfall and temperature across different AEZs, 
with the northern part of the country experiencing higher temperatures. Moreover, the quality and 
accuracy of the weather data used for water-limited yield prediction could also play a significant 
role. Despite the improvement in ERA-interim weather data quality, transitioning to ERA5 after 
reanalysis, the scarcity of weather stations in Africa poses challenges in obtaining high-resolution 
weather data (Gleixner et al., 2020; Harris et al., 2014). The situation is further exacerbated in rural 
areas, which are the primary agricultural areas, where very few weather stations are available 
(Gleixner et al., 2020). 

 Yield Gap of Maize in Ghana 
The water-limited yield gap, expressed as a percentage of the potential water-limited yield, ranged 
from 18.3% to 74.3% in our study. This aligns with previous findings in Navrango, Upper East 
region of northern Ghana, by MacCarthy et al. (2018), who reported water-limited exploitable 
yield gaps between 22% and 35% and potential yield gaps ranging from 59% to 75%. Another 
study by van Loon et al. (2019) conducted in Nkoranza and Savelugu municipalities of Ghana 
found maize water-limited yield gaps ranging from 67% to 84%. Our results are consistent with 
these previous studies. However, it is worth noting that the range of yield gap variability in our 
study is three times greater than that reported in the other studies. This discrepancy can be 
attributed to the different assumptions and underlying crop models used in each study (Salo et al., 
2016). For instance, van Loon et al. (2019) employed a hybrid-maize simulation model, while 
MacCarthy et al. (2018) used the DSSAT model. 

In the study by Boullouz et al. (2022), the potential yield gap variation was estimated to range 
from 17% to 98.2% using the LINTUL-1 model. Notably, the integration of water balance in the 
LINTUL-2 model, as observed in our study, resulted in a reduced yield gap variation, narrowing 
it to a range of 81.2% to 55.96%. This emphasizes the importance of incorporating water balance 
considerations in maize yield prediction, particularly in rainfed production systems. 
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4.3.1.1 Soil Characteristics and Yield Gap 
The soil organic matter, base saturation, and soil nitrogen, identified as important drivers of the 
yield gap, were found to have a negative correlation with the maize water-limited yield gap. An 
increase in these variables was associated with a decrease in the yield gap. Y. Liu et al. (2013) 
conducted a study that revealed an increase in soil organic matter enhances the soil’s water-holding 
capacity, allowing it to retain more water for crop transpiration even during periods of drought. 
Massignam et al. (2009) found in their study that nitrogen is a crucial nutrient for improving maize 
yield, which explains the negative relationship observed between soil nitrogen content and the 
maize water-limited yield gap.  

On the other hand, among the soil parameters, positive associations were observed between the 
yield gap and soil zinc, soil iron, soil exchangeable potassium, and effective cation exchange 
capacity. Numerous studies, including those by Manzeke et al. (2012), D.-Y. Liu et al. (2017), and 
Elsayed et al. (2022), have demonstrated the positive effect of zinc micronutrients on improving 
maize yield. However, the contradiction with our findings can be explained by the fact that 87.8% 
of the data points had soil zinc content below the critical value of 5 mg kg-1, as identified by 
Adeoye and Agboola (1985) in Nigeria. According to that study, critical values were determined 
for different soil parameters that affect maize production. In our trials, we found that the maximum 
exchangeable potassium was 0.49 milliequivalents (mEq) of K per 100 grams (g) of soil, which is 
significantly lower than the critical K value of 0.6 mEq g-1. This indicates that the potassium 
content in the soil of our study sites is below the critical threshold recommended for optimal maize 
production and could explain the positive relationship found between soil exchangeable potassium 
and the maize yield gap.  

4.3.1.2 Fertilizer Application and Yield Gap 
The results of the ridge regression analysis of the important variables showed that fertilizer 
application has a positive effect on maize yield and reduces the water-limited yield gap in our 
study trials. Specifically, nitrogen application, phosphate application, and sulfur application were 
found to decrease the maize yield gap and were identified as the most influential fertilizer drivers, 
as they contributed more to the explanation of the maize yield gap according to the random forest 
model. This finding is consistent with the study conducted by Boullouz et al. (2022), which also 
reported a positive effect of phosphate fertilizer application on reducing the yield gap by 8 kg ha-1. 
Nafiu et al. (2011) found a positive relationship between NPK application and dry matter 
production and yield of eggplant in southwestern Nigeria. Specifically, an increase in NPK 
application up to 200 kg ha-1 had a positive effect on yield and dry matter production. Nitrogen, 
phosphorus, and potassium are the three major macronutrients that are essential for crop 
production (Zewide and Reta, 2021). Given the high soil degradation and decreasing soil fertility, 
the supply of these major nutrients through fertilization or land management is crucial for 
improving crop yield. 

However, it should be noted that excessive application of macronutrients like nitrogen can have 
negative consequences. High nitrogen application can lead to increased nitrous oxide (N2O) 
emissions, contributing to climate change (Leitner et al., 2020). Leitner et al. (2020) found that 
closing 50% of the yield gap would triple the baseline N2O emissions, estimated at 
0.24 kg N2O-N ha-1, while closing 75% of the yield gap would increase emissions by a factor of 
5. This is particularly evident when nitrogen application exceeds 100 kg ha-1. Therefore, nitrogen 
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should be applied carefully to avoid any complications that could harm crop yield and hinder the 
achievement of Sustainable Development Goal 2, which aims to create a world free of hunger by 
2030. 

The secondary nutrient sulfur was also found to have a negative correlation with the yield gap. The 
ANOVA and Tukey post hoc test, conducted at a significance level of 5%, indicated that there is 
a significant difference in yield gap among some locations, and treatments involving sulfur nutrient 
consistently showed the smallest yield gap. In three of the four locations with significant 
differences, the treatment involving sulfur stood out with the smallest yield gap; these were 
Wenchi, KNUST, and Gbalahi. Similar results were found by Agyin-Birikorang et al. (2022), who 
reported that the omission of sulfur decreased maize yield by 35% in the Savanna agroecological 
zones of Northern Ghana. Similarly, Kugbe et al. (2019) found that the application of sulfur, boron, 
and zinc in Tolon District in Northern Ghana increased maize yield by 30%. 

Despite the positive effect of fertilization on maize yield, we observed that the micronutrient zinc 
tended to increase the maize water-limited yield gap in our study sites. However, its effect was not 
too significant in explaining the variability of the maize yield gap according to the random forest 
model, as indicated by the feature importance graph. Overall, we agree that fertilization has a 
positive effect on maize yield in Ghana, as treatments without fertilization consistently showed 
higher yield gaps. This finding aligns with the study by Thomas (2020), which revealed that 
fertilizers are a key component for improving crop yields in SSA. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 
This study focused on estimating water-limited maize yield using the LINTUL-2 model and 
conducting spatial analysis of the yield gap in Ghana. The results revealed that LINTUL-2 
performed well in simulating water-limited yield in the majority of the locations, except for Ejura 
and KNUST, where poor rainfall distribution resulted in lower water-limited yield compared to 
field observations. Analysis of the maize yield gap in the other high-performing locations 
highlighted the negative correlation of nitrogen application, soil nitrogen content, soil organic 
matter, phosphorus application, base saturation, potassium application, and sulfur application with 
the yield gap. Increasing these parameters may help to close the yield gap in our study trials. On 
the other hand, higher soil potassium content, effective cation exchange capacity, soil zinc content, 
soil iron content, and zinc application were associated with an increase in the yield gap. 

The ERA5 weather data has been identified as a more reliable and closer representation of 
observed rainfall data, making it suitable for modelling environments in Africa, where data scarcity 
poses significant challenges. Nonetheless, to enhance the robustness and reliability of the 
simulation model, collection of accurate rainfall data and comprehensive soil characteristics during 
the trials is recommended. Availability of such reliable data will facilitate a better understanding 
of the dynamics of the maize water-limited yield gap in Ghana. 

Furthermore, our findings emphasize the potential of sulfur application as a secondary nutrient to 
reduce the maize yield gap when combined with the major macronutrients (NPK). Ghanaian 
authorities can therefore promote a combination of macronutrients and sulfur nutrient application 
to improve the maize yield and reduce the yield gap. By encouraging farmers to adopt such 
practices, they can significantly improve maize productivity. Moreover, focusing on strengthening 
agricultural activities, especially in the northern regions of the country where the observed maize 
yield is significantly below the water-limited potential yield, can lead to substantial improvements 
in maize production and food security. By implementing these strategies, Ghana can effectively 
address the yield gap and achieve more sustainable and productive agriculture. However, 
considering the potential release of nitrous oxide due to nitrogen use, it is essential to exercise 
caution when using mineral fertilizers and consider transitioning to organic alternatives.



55 

CHAPTER 6: REFERENCES 
Abdelgadir, G.A., and Eledum, H. (2016). A comparison study of ridge regression and principle 

component regression with application. International Journal of Science and Research, 
3(8), 1-11. doi:https://edupediapublications.org/journals 

Addo, A., and Amponsah, S.K. (2018). Present status and future prospects of agricultural 
machinery industry in Ghana. Agricultural Mechanization in Asia, Africa and Latin 
America. doi:http://hdl.handle.net/123456789/1415 

Adeoye, G.O., and Agboola, A.A. (1985). Critical levels for soil pH, available P, K, Zn and Mn 
and maize ear-leaf content of P, Cu and Mn in sedimentary soils of South-Western Nigeria. 
Fertilizer research, 6, 65-71. https://doi.org/10.1007/BF01058165 

Adiele, J., Schut, A., van den Beuken, R., Ezui, K., Pypers, P., Ano, A., Egesi, C.N., and Giller, K. 
(2021). A recalibrated and tested LINTUL-Cassava simulation model provides insight into 
the high yield potential of cassava under rainfed conditions. European Journal of 
Agronomy, 124, 126242. https://doi.org/10.1016/j.eja.2021.126242 

Adu, G., Abdulai, M., Alidu, H., Nustugah, S., Buah, S., Kombiok, J., . . . Etwire, P. (2014). 
Recommended production practices for maize in Ghana. Accra: AGRA/CSIR.  

Adzawla, W., .Atakora, W.K., Kissiedu, I.N., Martey, E., Etwire, P.M., Gouzaye, A., and 
Bindraban, P.S. (2021). Characterization of farmers and the effect of fertilization on maize 
yields in the Guinea savannah, Sudan savannah, and transitional agroecological zones of 
Ghana? EFB Bioeconomy. https://doi.org/10.1016/j.bioeco.2021.100019 

Aggarwal, P.K., Kalra, N., Chander, S., and Pathak, H. (2006). InfoCrop: a dynamic simulation 
model for the assessment of crop yields, losses due to pests, and environmental impact of 
agro-ecosystems in tropical environments. I. Model description. Agricultural Systems, 
89(1), 1-25. doi:https://doi.org/10.1016/j.agsy.2005.08.001 

Agyin-Birikorang, S., Tindjina, I., Adu-Gyamfi, R., Dauda, H.W., Fugice Jr, J., and Sanabria, J. 
(2022). Managing essential plant nutrients to improve maize productivity in the savanna 
agroecological zones of northern Ghana: The role of secondary and micronutrients. Journal 
of Plant Nutrition, 46(1), 38-57. https://doi.org/10.1080/01904167.2022.2027984 

Andam, K., Johnson, M., Ragasa, C., Kufoalor, D., and Das Gupta, S. (2017). A chicken and maize 
situation: the poultry feed sector in Ghana. Discussion Paper 01601. International Food 
Policy Research Institute.  

Aslam, M., Maqbool, M.A., and Cengiz, R. (2015). Drought stress in maize (Zea mays L.) Effects, 
resistance mechanisms, global achievements and. Cham: Springer.  

Barutçular, C., Dizlek, H., El-Sabagh, A., Sahin, T., EL-Sabagh, M., and Islam, M.S. (2016). 
Nutritional quality of maize in response to drought stress during grain-filling stages in 
Mediterranean climate condition. Exp. Biol. Agric. Sci, 4, 644-652. 
http://dx.doi.org/10.18006/2016.4(Issue6).644.652 

Boullouz, M., Bindraban, P. S., Kissiedu, I.N., Kouame, A.K., Devkota, K.P., and Atakora, W.K. 
(2022). An integrative approach based on crop modeling and geospatial and statistical 
analysis to quantify and explain the maize (Zea mays) yield gap in Ghana. Frontiers in Soil 
Science, 2, 68. https://doi.org/10.3389/fsoil.2022.1037222 

Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. 
doi:https://doi.org/10.1023/A:1010933404324 

Bua, S., El Mejahed, K., MacCarthy, D., Adogoba, D.S., Kissiedu, I.N., Atakora, W.K., . . . 
Bindraban, P. S. (2020). Yield response of maize to fertilizers.   

https://edupediapublications.org/journals
http://hdl.handle.net/123456789/1415
https://doi.org/10.1007/BF01058165
https://doi.org/10.1016/j.eja.2021.126242
https://doi.org/10.1016/j.bioeco.2021.100019
https://doi.org/10.1016/j.agsy.2005.08.001
https://doi.org/10.1080/01904167.2022.2027984
http://dx.doi.org/10.18006/2016.4(Issue6).644.652
https://doi.org/10.3389/fsoil.2022.1037222
https://doi.org/10.1023/A:1010933404324


56 

Chapoto, A., and Ragasa, C. (2013). Moving in the right direction? Maize productivity and 
fertilizer use and use intensity in Ghana.  

Chatfield, C., and Xing, H. (2019). The analysis of time series: An introduction with R. CRC Press. 
Conrado, T.V., Ferreira, D.F., Scapim, C.A., and Maluf, W.R. (2017). Adjusting the Scott-Knott 

cluster analyses for unbalanced designs. Crop Breed Appl. Biotechnol., 17(1), 1-9. 
http://dx.doi.org/10.1590/198470332017v17n1a1 

Cutler, A., Cutler, D.R., and Stevens, J.R. (2012). Random forests. Ensemble machine learning: 
Methods and applications, 157-175. https://doi.org/10.1007/978-1-4419-9326-7_5 

Cytiva. (n.d.). Mechanistic-vs-statistical-models. Retrieved from 
https://www.cytivalifesciences.com/en/us/solutions/bioprocessing/knowledge-
center/mechanistic-vs-statistical-models 

Dagum, E.B., and Cholette, P.A. (2006). The Components of Time Series. In: Benchmarking, 
temporal distribution, and reconciliation methods for time series (Vol. 186). New York: 
Springer. 

Danquah, E.O., Beletse, Y., Stirzaker, R., Smith, C., Yeboah, S., Oteng-Darko, P., Frimpong, F., 
and Ennin, S.A. (2020). Monitoring and modelling analysis of maize (Zea mays L.) yield 
gap in smallholder farming in Ghana. Agriculture, 10(9), 420. 
https://doi.org/10.3390/AGRICULTURE10090420  

Darfour, B., and Rosentrater, K.A. (2016a). Agriculture and food security in Ghana. Paper 
presented at the 2016 ASABE annual international meeting. 

Darfour, B., and Rosentrater, K.A. (2016b). Maize in Ghana: an overview of cultivation to 
processing. Paper presented at the 2016 ASABE Annual International Meeting. 

Datta, S., Taghvaeian, S., and Stivers, J. (2017). Understanding soil water content and thresholds 
for irrigation management.  

De Janvry, A., and Sadoulet, E. (2010). Agricultural growth and poverty reduction: Additional 
evidence. The World Bank research observer, 25(1), 1-20. 
https://doi.org/10.1093/wbro/lkp015 

Ding, R., Kang, S., Zhang, Y., Hao, X., Tong, L., and Du, T. (2013). Partitioning evapotranspiration 
into soil evaporation and transpiration using a modified dual crop coefficient model in 
irrigated maize field with ground-mulching. Agricultural water management, 127, 85-96. 
https://doi.org/10.1016/j.agwat.2013.05.018 

Du Plessis, J. (2003). Maize production. Department of Agriculture Pretoria, South Africa. 
Elsayed, N.S., Obaid, H., Shi, D., Lei, P., Xie, D., Ni, J., . . . Ni, C. (2022). Effect of zinc application 

on maize productivity and eukaryotic microorganism’s diversity in a newly cultivated field. 
Journal of Soil Science Plant Nutrition, 22(3), 3697-3707. https://doi.org/10.1007/s42729-
022-00920-x 

Essel, B., Abaidoo, R.C., Opoku, A., and Ewusi-Mensah, N. (2020). Economically optimal rate for 
nutrient application to maize in the semi-deciduous forest zone of Ghana. Journal of Soil 
Science Plant Nutrition, 20, 1703-1713. https://doi.org/10.1007/s42729-020-00240-y 

Ezui, K., Leffelaar, P., Franke, A., Mando, A., and Giller, K. (2018). Simulating drought impact 
and mitigation in cassava using the LINTUL model. European Journal of Agronomy, 219, 
256-272. https://doi.org/10.1016/j.fcr.2018.01.033 

Fan, J., and Gijbels, I. (1996). Local polynomial modelling and its applications: monographs on 
statistics and applied probability 66 (Vol. 66). CRC Press. 

FAOSTAT. (2021). Crops data. Food and Agriculture Organization of the United Nations. 
https://www.fao.org/faostat/en/#data/QC  

http://dx.doi.org/10.1590/198470332017v17n1a1
https://doi.org/10.1007/978-1-4419-9326-7_5
https://www.cytivalifesciences.com/en/us/solutions/bioprocessing/knowledge-center/mechanistic-vs-statistical-models
https://www.cytivalifesciences.com/en/us/solutions/bioprocessing/knowledge-center/mechanistic-vs-statistical-models
https://doi.org/10.3390/AGRICULTURE10090420
https://doi.org/10.1093/wbro/lkp015
https://doi.org/10.1016/j.agwat.2013.05.018
https://doi.org/10.1007/s42729-022-00920-x
https://doi.org/10.1007/s42729-022-00920-x
https://doi.org/10.1007/s42729-020-00240-y
https://doi.org/10.1016/j.fcr.2018.01.033
https://www.fao.org/faostat/en/#data/QC


57 

Farré, I., Van Oijen, M., Leffelaar, P., and Faci, J. (2000). Analysis of maize growth for different 
irrigation strategies in northeastern Spain. European Journal of Agronomy, 12(3-4), 225-
238. doi:https://doi.org/10.1016/S1161-0301(00)00051-4 

Fayaz, A., Kumar, A., Nisar, F., Abidi, I., Rasool, F., Dar, Z., . . . Kumar, Y.R. (2021). Crop 
Simulation Models: A Tool for Future Agricultural Research and Climate Change. Asian 
Journal of Agricultural Extension, Economics Sociology, 39(6), 146-154.  

Gleixner, S., Demissie, T., and Diro, G.T. (2020). Did ERA5 improve temperature and 
precipitation reanalysis over East Africa? Atmosphere, 11(9), 996. 
https://doi.org/10.3390/atmos11090996 

GSS. (2021). The Ghana 2021 Population and Housing Census (PHC) Volume 3A.  
GSS. (2015). Ghana demographic and health survey 2014. Rockville, Maryland: GSS, GHS, and 

ICF International. 
GSS. (2018). Ghana living standards survey (GLSS7): Poverty trends in Ghana; 2005-2017. Accra: 

GSS.  
Gurjar, G., Swami, S., Meena, N., and Lyngdoh, E. (2017). Effect of solar radiation in crop 

production. Natural Resource Management for Climate Smart Sustainable Agriculture, 
Soil Conservation Society of India. New Delhi.  

Harris, I., Jones, P.D., Osborn, T.J., and Lister, D.H. (2014). Updated high‐resolution grids of 
monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of 
Climatology, 34(3), 623-642. https://doi.org/10.1002/joc.3711 

He, D., and Wang, E. (2019). On the relation between soil water holding capacity and dryland crop 
productivity. Geoderma, 353, 11-24. https://doi.org/10.1016/j.geoderma.2019.06.022 

Hemdan, E.E.-D., Shouman, M.A., and Karar, M.E. (2020). Covidx-net: A framework of deep 
learning classifiers to diagnose COVID-19 in x-ray images. arXiv. 
https://doi.org/10.48550/arXiv.2003.11055 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., . . . Schepers, D. (2020). 
The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 
146(730), 1999-2049. https://doi.org/10.1002/qj.3803 

Hoerl, A.E., and Kennard, R.W. (1970). Ridge regression: Biased estimation for nonorthogonal 
problems. Technometrics, 12(1), 55-67. https://doi.org/10.1080/00401706.1970.10488634 

Hoerl, R.W. (2020). Ridge regression: a historical context. Technometrics, 62(4), 420-425. 
https://doi.org/10.1080/00401706.2020.1742207 

Hsiao, T.C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D., and Fereres, E. (2009). AquaCrop—
The FAO crop model to simulate yield response to water: III. Parameterization and testing 
for maize. Agronomy Journal, 101. https://doi.org/10.2134/agronj2008.0218s 

IFPRI. (2014). Maize productivity in Ghana (Vol. 5). International Food Policy Research Institute.  
Jame, Y., and Cutforth, H. (1996). Crop growth models for decision support systems. Canadian 

Journal of Plant Science, 76(1), 9-19. https://doi.org/10.4141/cjps96-003 
Jelihovschi, E.G., Faria, J.C., and Allaman, I.B. (2014). ScottKnott: A package for performing the 

Scott-Knott clustering algorithm in R. TEMA, 15, 3-17. 
doi:https://doi.org/10.5540/tema.2014.015.01.0003 

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L., . . . Ritchie, 
J.T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3-4), 
235-265. https://doi.org/10.1016/S1161-0301(02)00107-7 

Jose, J. (2022). Introduction to time series analysis and its applications.  
Karch, J. (2020). Improving on Adjusted R-squared. Collabra: Psychology, 6(1). 

https://doi.org/10.31234/osf.io/v8dz5 

https://doi.org/10.1016/S1161-0301(00)00051-4
https://doi.org/10.3390/atmos11090996
https://doi.org/10.1002/joc.3711
https://doi.org/10.1016/j.geoderma.2019.06.022
https://doi.org/10.48550/arXiv.2003.11055
https://doi.org/10.1002/qj.3803
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1080/00401706.2020.1742207
https://doi.org/10.2134/agronj2008.0218s
https://doi.org/10.4141/cjps96-003
https://doi.org/10.5540/tema.2014.015.01.0003
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.31234/osf.io/v8dz5


58 

Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., . . . 
Hochman, Z. (2003). An overview of APSIM, a model designed for farming systems 
simulation. European Journal of Agronomy, 18(3-4), 267-288. 
https://doi.org/10.1016/S1161-0301(02)00108-9 

Kendie, S. (2019). Regions and regionalism in Ghana: Reflections on a contemporary issue in 
Ghana. 

Khoshvaghti, H., Eskandari-Kordlar, M., and Lotfi, R. (2014). Response of maize cultivars to 
water stress at grain filling phase. Azarian Journal of Agriculture.  

Kouame, A.K., Bindraban, P.S., Kissiedu, I.N., Atakora, W.K., and El Mejahed, K. (2023). 
Identifying drivers for variability in maize (Zea mays L.) yield in Ghana: A meta-regression 
approach. Agricultural Systems, 209, 103667. https://doi.org/10.1016/j.agsy.2023.103667 

Kouame, K.K.A., Bindraban, P.S., Kissiedu, I.N., Atakora, W.K., and El Mejahed, K. (2021). 
Evaluation and Geospatial Analysis of Variability in Maize Yield Response to Fertilizer 
(NPK) Using Modeling in Ghana.  

Kugbe, J., Kombat, R., and Atakora, W. (2019). Secondary and micronutrient inclusion in fertilizer 
formulation impact on maize growth and yield across northern Ghana. Cogent Food 
Agriculture, 5(1), 1700030. https://doi.org/10.1080/01904167.2022.2027984 

Ledolter, J. (2008). Smoothing time series with local polynomial regression on time. 
Communications in Statistics—Theory Methods, 37(6), 959-971. 
https://doi.org/10.1080/03610920701693843 

Leenaars, J.G., Claessens, L., Heuvelink, G.B., Hengl, T., González, M.R., van Bussel, L.G., . . . 
and Cassman, K.G. (2018). Mapping rootable depth and root zone plant-available water 
holding capacity of the soil of sub-Saharan Africa. Geoderma, 324, 18-36. 
https://doi.org/10.1016/j.geoderma.2018.02.046 

Leitner, S., Pelster, D.E., Werner, C., Merbold, L., Baggs, E.M., Mapanda, F., and Butterbach-
Bahl, K. (2020). Closing maize yield gaps in sub-Saharan Africa will boost soil N2O 
emissions. Current Opinion in Environmental Sustainability, 47, 95-105. 
https://doi.org/10.1016/j.cosust.2020.08.018 

Liu, D.-Y., Zhang, W., Yan, P., Chen, X.-P., Zhang, F.-S., and Zou, C.-Q. (2017). Soil application 
of zinc fertilizer could achieve high yield and high grain zinc concentration in maize. Plant 
and Soil, 411, 47-55. https://doi.org/10.1007/s11104-016-3105-9 

Liu, Y., Gao, M., Wu, W., Tanveer, S.K., Wen, X., and Liao, Y. (2013). The effects of conservation 
tillage practices on the soil water-holding capacity of a non-irrigated apple orchard in the 
Loess Plateau, China. Soil and Tillage Research, 130(2013), 7-12. 
https://doi.org/10.1016/j.still.2013.01.012 

Lobell, D.B., Schlenker, W., and Costa-Roberts, J. (2011). Climate trends and global crop 
production since 1980. Science, 333(6042), 616-620. 
https://doi.org/10.1126/science.1204531 

Mabe, F.N., Danso-Abbeam, G., and Ehiakpor, D.S. (2018). Assessment of implementation of 
Planting For Food and Jobs (PFJ) programmes: Lessons and ways forward. 

MacCarthy, D.S., Adiku, S.G., Freduah, B.S., Kamara, A.Y., Narh, S., and Abdulai, A.L. (2018). 
Evaluating maize yield variability and gaps in two agroecologies in northern Ghana using 
a crop simulation model. South African Journal of Plant, 35(2), 137-147. 
https://doi.org/10.1080/02571862.2017.1354407  

https://doi.org/10.1016/S1161-0301(02)00108-9
https://doi.org/10.1016/j.agsy.2023.103667
https://doi.org/10.1080/01904167.2022.2027984
https://doi.org/10.1080/03610920701693843
https://doi.org/10.1016/j.geoderma.2018.02.046
https://doi.org/10.1016/j.cosust.2020.08.018
https://doi.org/10.1007/s11104-016-3105-9
https://doi.org/10.1126/science.1204531
https://doi.org/10.1080/02571862.2017.1354407


59 

Machakaire, A.T., Steyn, J.M., Caldiz, D., and Haverkort, A. (2016). Forecasting yield and tuber 
size of processing potatoes in South Africa using the LINTUL-potato-DSS model. Potato 
Research, 59, 195-206. https://doi.org/10.1007/s11540-016-9321-0 

Manzanas, R., Amekudzi, L.K., Preko, K., Herrera, S., and Gutierrez, J.M. (2014). Precipitation 
variability and trends in Ghana: An intercomparison of observational and reanalysis 
products. Climatic Change. https://doi.org/10.1007/s10584-014-1100-9 

Manzeke, G.M., Mapfumo, P., Mtambanengwe, F., Chikowo, R., Tendayi, T., and Cakmak, I. 
(2012). Soil fertility management effects on maize productivity and grain zinc content in 
smallholder farming systems of Zimbabwe. Plant and Soil, 361, 57-69. 
https://doi.org/10.1007/s11104-012-1332-2 

Massignam, A., Chapman, S., Hammer, G., and Fukai, S. (2009). Physiological determinants of 
maize and sunflower grain yield as affected by nitrogen supply. Field Crops Research, 
113(3), 256-267. https://doi.org/10.1016/j.fcr.2009.06.001 

McCown, R.L., Hammer, G.L., Hargreaves, J.N.G., Holzworth, D.P., and Freebairn, D.M. (1996). 
APSIM: A novel software system for model development, model testing and simulation in 
agricultural systems research. Agricultural Systems, 50(3), 255-271. 
https://doi.org/10.1016/0308-521X(94)00055-V 

McMillen, M.S., Mahama, A.A., Sibiya, J., Lübberstedt, T., and Suza, W.P. (2022). Improving 
drought tolerance in maize: Tools and techniques. Frontiers in Genetics, 13, 1001001. 
https://doi.org/10.3389/fgene.2022.1001001 

MiDA. (2010). Investment opportunity in Ghana: Maize, rice, and soybean. Accra, Ghana.  
MoFA. (2010). 2010 MoFA annual program review. Accra, Ghana: MoFA.  
MoFA. (2019a). Agriculture in Ghana: Facts and Figures 2018. Accra, Ghana: SRID. 
MoFA. (2019b). Planting for Food and Jobs (PFJ) Performance Review (2017 and 2018) and 

Outlook (2019). PFJ Secretariat. Accra, Ghana: MoFA.  
MoFA. (2020). Meet the press; Presentation by the Minister For Food and Agriculture. Minist. 

Food Agric. Stat. Res. Inf. Dir. MoFA, Accra, Ghana. https://www.mofa.gov.gh/site/media-
centre/press-briefing/331-meet-the-press 

Mohapatra, N., Shreya, K., and Chinmay, A. (2020). Optimization of the random forest algorithm. 
Paper presented at the Advances in Data Science and Management: Proceedings of ICDSM 
2019. 

Morales-Oñate, V., and Morales-Oñate, B. (2021). MTest: A bootstrap test for multicollinearity. 
Munich Personal RePEc Archive. https://doi.org/10.33333/rp.vol51n2.05 

Mourice, S.K., Rweyemamu, C.L., Tumbo, S.D., and Amuri, N. (2014). Maize cultivar specific 
parameters for decision support system for agrotechnology transfer (DSSAT) application 
in Tanzania. American Journal of Plant Sciences. http://hdl.handle.net/10625/53414 

Naab, J.B., Singh, P., Boote, K.J., Jones, J.W., and Marfo, K.O. (2004). Using the CROPGRO‐
peanut model to quantify yield gaps of peanut in the Guinean Savanna zone of Ghana. 
Agronomy Journal, 96(5), 1231-1242. https://doi.org/10.2134/agronj2004.1231 

Nafiu, A., Togun, O., Abiodun, M., and Chude, V. (2011). Effects of NPK fertilizer on growth, dry 
matter production and yield of eggplant in southwestern Nigeria. Agriculture Biology 
Journal of North America, 2(7), 1117-1125. 
https://doi.org/10.5251/abjna.2011.2.7.1117.1125 

Nyombi, K. (2010). Understanding growth of East Africa highland banana: experiments and 
simulation. Ph.D., Wageningen University and Research. 

https://doi.org/10.1007/s11540-016-9321-0
https://doi.org/10.1007/s10584-014-1100-9
https://doi.org/10.1007/s11104-012-1332-2
https://doi.org/10.1016/j.fcr.2009.06.001
https://doi.org/10.1016/0308-521X(94)00055-V
https://doi.org/10.3389/fgene.2022.1001001
https://www.mofa.gov.gh/site/media-centre/press-briefing/331-meet-the-press
https://www.mofa.gov.gh/site/media-centre/press-briefing/331-meet-the-press
https://doi.org/10.33333/rp.vol51n2.05
http://hdl.handle.net/10625/53414
https://doi.org/10.2134/agronj2004.1231
https://doi.org/10.5251/abjna.2011.2.7.1117.1125


60 

Orcan, F. (2020). Parametric or non-parametric: Skewness to test normality for mean comparison. 
International Journal of Assessment Tools in Education, 7(2), 255-265. 
https://doi.org/10.21449/ijate.656077 

Oteng-Darko, P., Yeboah, S., Addy, S., Amponsah, S., and Danquah, E. O. (2013). Crop modeling: 
A tool for agricultural research – A review. 

Oxford Business Group. (2021). Agriculture in Africa 2021. 
Palm, R., and Iemma, A. (2002). Conditions d'application et transformations de variables en 

régression linéaire. Notes de Statistique et d'Informatique. 
https://hdl.handle.net/2268/81767 

Paustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., DeLonge, M., . . . and Goddard, T. 
(2019). Quantifying carbon for agricultural soil management: from the current status 
toward a global soil information system. Carbon Management, 10(6), 567-587. 
https://doi.org/10.1080/17583004.2019.1633231 

Penman, H.L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of 
the Royal Society of London. Series A. Mathematical Physical Sciences, 193(1032), 120-
145. https://doi.org/10.1098/rspa.1948.0037 

Pereira, G.W., Valente, D.S.M., de Queiroz, D.M., de Freitas Coelho, A.L., Costa, M.M., and 
Grift, T. (2022). Smart-map: An open-source QGIS plugin for digital mapping using 
machine learning techniques and ordinary kriging. Agronomy Journal, 12(6), 1350. 
https://doi.org/10.3390/agronomy12061350 

Poggio, L., De Sousa, L. M., Batjes, N.H., Heuvelink, G., Kempen, B., Ribeiro, E., and Rossiter, 
D. (2021). SoilGrids 2.0: producing soil information for the globe with quantified spatial 
uncertainty. Soil, 7(1), 217-240. https://doi.org/10.5194/soil-7-217-2021 

Poole, M.A., and O'Farrell, P.N. (1971). The assumptions of the linear regression model. 
Transactions of the Institute of British Geographers, 145-158. 
https://doi.org/10.2307/621706 

Quaye, W. (2008). Food security situation in northern Ghana, coping strategies and related 
constraints. African Journal of Agricultural Research, 3(5), 334-342. 
https://edepot.wur.nl/29768 

Raes, D., Steduto, P., Hsiao, T.C., and Fereres, E. (2009). AquaCrop – The FAO crop model to 
simulate yield response to water: II. Main algorithms and software description. Agronomy 
Journal, 101(3), 438-447. https://doi.org/10.2134/agronj2008.0140s 

Rockström, J. (2003). Water for food and nature in drought–prone tropics: vapour shift in rain-fed 
agriculture. Philosophical Transactions of the Royal Society of London. Series B: 
Biological Sciences, 358(1440), 1997-2009. https://doi.org/10.1098/rstb.2003.1400 

Ruppert, D., Sheather, S.J., and Wand, M.P. (1995). An effective bandwidth selector for local least 
squares regression. Journal of the American Statistical Association, 90(432), 1257-1270. 
https://doi.org/10.1080/01621459.1995.10476630 

Salo, T.J., Palosuo, T., Kersebaum, K.C., Nendel, C., Angulo, C., Ewert, F., . . . and Moriondo, M. 
(2016). Comparing the performance of 11 crop simulation models in predicting yield 
response to nitrogen fertilization. Journal of Agricultural Science, 154(7), 1218-1240. 
https://doi.org/10.1017/S0021859615001124 

SARI. (1996). Annual Report. 
Saxton, K., Rawls, W.J., Romberger, J.S., and Papendick, R. (1986). Estimating generalized soil‐

water characteristics from texture. Soil Science Society of America Journal, 50(4), 1031-
1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x 

https://doi.org/10.21449/ijate.656077
https://hdl.handle.net/2268/81767
https://doi.org/10.1080/17583004.2019.1633231
https://doi.org/10.1098/rspa.1948.0037
https://doi.org/10.3390/agronomy12061350
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.2307/621706
https://edepot.wur.nl/29768
https://doi.org/10.2134/agronj2008.0140s
https://doi.org/10.1098/rstb.2003.1400
https://doi.org/10.1080/01621459.1995.10476630
https://doi.org/10.1017/S0021859615001124
https://doi.org/10.2136/sssaj1986.03615995005000040039x


61 

Scheiterle, L., and Birner, R. (2018). Assessment of Ghana’s comparative advantage in maize 
production and the role of fertilizers. Sustainability, 10(11), 4181. 
https://doi.org/10.3390/su10114181 

Schmidt, A.F., and Finan, C. (2018). Linear regression and the normality assumption. Journal of 
clinical epidemiology, 98, 146-151. https://doi.org/10.1016/j.jclinepi.2017.12.006 

Shah, T.R., Prasad, K., and Kumar, P. (2016). Maize – A potential source of human nutrition and 
health: A review. https://doi.org/10.1080/23311932.2016.1166995  

Shen, H., Chen, Y., Wang, Y., Xing, X., and Ma, X. (2020). Evaluation of the potential effects of 
drought on summer maize yield in the Western Guanzhong Plain, China. Agronomy, 10(8), 
1095. https://doi.org/10.3390/agronomy10081095 

Shibu, M.E., Leffelaar, P.A., Van Keulen, H., and Aggarwal, P.K. (2010). LINTUL3, a simulation 
model for nitrogen-limited situations: Application to rice. European Journal of Agronomy, 
32(4), 255-271. https://doi.org/10.1016/j.eja.2010.01.003 

Spitters, C., and Schapendonk, A. (1990). Evaluation of breeding strategies for drought tolerance 
in potato by means of crop growth simulation. In: El Bassam, N., Dambroth, M., 
Loughman, B.C. (eds) Genetic Aspects of Plant Mineral Nutrition. Developments in Plant 
and Soil Sciences, vol 42. Dordrecht: Springer. https://doi.org/10.1007/978-94-009-2053-
8_24 

SRID/MoFA. (2017). Technical Report. Minist. Food Agric. (MoFA)-Statistics, Res. Inf. Dir. 
(SRID). 

Srivastava, A.K., Ceglar, A., Zeng, W., Gaiser, T., Mboh, C.M., and Ewert, F. (2020). The 
implication of different sets of climate variables on regional maize yield simulations. 
Atmosphere, 11(2), 180. https://doi.org/doi:10.3390/atmos11020180 

Steduto, P., Hsiao, T.C., Raes, D., and Fereres, E. (2009). AquaCrop – The FAO crop model to 
simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 
101(3), 426-437. https://doi.org/10.2134/agronj2008.0139s 

Thomas, M.A.H. (2020). Improving Crop Yields in Sub-Saharan Africa-What Does the East 
African Data Say. International Monetary Fund. 

Tobler, W.R. (1970). A computer movie simulating urban growth in the Detroit region. Economic 
Geography, 46(sup1), 234-240. https://doi.org/10.2307/143141 

van Loon, M.P., Adjei-Nsiah, S., Descheemaeker, K., Akotsen-Mensah, C., van Dijk, M., Morley, 
T., . . . and Reidsma, P. (2019). Can yield variability be explained? Integrated assessment 
of maize yield gaps across smallholders in Ghana. Field Crops Research, 236, 132-144. 
https://doi.org/10.1016/j.fcr.2019.03.022 

van Oijen, M., and Leffelaar, P. (2008a). Lintul-1: potential crop growth. A simple general crop 
growth model for optimal growing conditions (example: spring wheat). 

van Oijen, M., and Leffelaar, P. (2008b). Lintul-2: water limited crop growth. A simple general 
crop growth model for water-limited growing conditions (example: spring wheat).  

Wang, L.K., and Wang, M.-H.S. (2022). Understanding evaporation, transpiration, 
evapotranspiration, precipitation and runoff volume for agricultural waste management. 
Evolutionary Progress in Science, Technology, Engineering, Arts, Mathematics, 1-81. 
https://doi.org/10.17613/m8tf-zd10   

World Bank. (2017). Ghana: Agriculture Sector Policy Note Transforming Agriculture for 
Economic Growth, Job Creation and Food Security.  

Worqlul, A.W., Dile, Y.T., Jeong, J., Adimassu, Z., Lefore, N., Gerik, T., Srinivasan, R., and Clarke, 
N. (2019). Effect of climate change on land suitability for surface irrigation and irrigation 

https://doi.org/10.3390/su10114181
https://doi.org/10.1016/j.jclinepi.2017.12.006
https://doi.org/10.1080/23311932.2016.1166995
https://doi.org/10.3390/agronomy10081095
https://doi.org/10.1016/j.eja.2010.01.003
https://doi.org/10.1007/978-94-009-2053-8_24
https://doi.org/10.1007/978-94-009-2053-8_24
https://doi.org/10.2134/agronj2008.0139s
https://doi.org/10.2307/143141
https://doi.org/10.1016/j.fcr.2019.03.022


62 

potential of the shallow groundwater in Ghana. Computers and Electronics in Agriculture, 
157, 110-125.  

Yamba, E.I., Aryee, J.N., Quansah, E., Davies, P., Wemegah, C.S., Osei, M.A., . . . and Amekudzi, 
L.K. (2023). Revisiting the agro-climatic zones of Ghana: A re-classification in conformity 
with climate change and variability. PLOS Climate, 2(1), e0000023. 
https://doi.org/10.1371/journal.pclm.0000023 

Zewide, I., and Reta, Y. (2021). Review on the role of soil macronutrient (NPK) on the 
improvement and yield and quality of agronomic crops. Journal of Agriculture and Food 
Science, 9(1), 7-11. https://doi.org/10.26765/DRJAFS23284767  

Zhang, Y.-W., Wang, K.-B., Wang, J., Liu, C., and Shangguan, Z.-P. (2021). Changes in soil water 
holding capacity and water availability following vegetation restoration on the Chinese 
Loess Plateau. Scientific Reports, 11(1), 9692. https://doi.org/10.1038/s41598-021-88914-
0 

Zhao, C., Liu, B., Xiao, L., Hoogenboom, G., Boote, K.J., Kassie, B.T., . . . and Hernandez-Ochoa, 
I.M. (2019). A SIMPLE crop model. European Journal of Agronomy, 104, 97-106. 
https://doi.org/10.1016/j.eja.2019.01.009   

https://doi.org/10.1371/journal.pclm.0000023
https://doi.org/10.26765/DRJAFS23284767
https://doi.org/10.1038/s41598-021-88914-0
https://doi.org/10.1038/s41598-021-88914-0
https://doi.org/10.1016/j.eja.2019.01.009


63 

CHAPTER 7: APPENDIX 
 

 

Appendix A. Ejura daily rainfall comparision (A) GMET vs ERA-5 and (B) GMET vs NASA 
Power 

 

Appendix B. Kumasi daily rainfall comparision (A) GMET vs ERA-5 and (B) GMET vs 
NASA Power 
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Appendix C. Tamale daily rainfall comparison (A) GMET vs ERA-5 and (B) GMET vs 
NASA Power



 

 
 
 
FERARI is an international public-private partnership that builds science-based approaches to site-
specific fertilization for widespread adoption by farmers in Ghana for improved food and nutrition 
security. This calls for a transformation of the fertilizer and food systems that must be driven by 
evidence-based agro-technical perspectives embedded in multi-stakeholder processes. 
 
To support this transformation, the following institutions have partnered to implement the 
Fertilizer Research and Responsible Implementation (FERARI) program: 

• International Fertilizer Development Centre (IFDC) 
• Mohammed VI Polytechnic University (UM6P) 
• OCP Group 
• Wageningen University and Research (WUR) 
• University of Liège (ULiège) 
• University of Ghana (UG) 
• University for Development Studies (UDS) 
• Kwame Nkrumah University of Science and Technology in Kumasi (KNUST) 
• University of Cape Coast (UCC) 
• University of Energy and Natural Resources (UENR) 
• Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development 

(AAMUSTED) College of Agriculture Education 
• Council for Scientific and Industrial Research in Kumasi (CSIR-SRI) and in Tamale 

(CSIR-SARI) and its subsidiary (CSIR-SARI-Wa) 
 
FERARI operates in conjunction with the Planting for Food and Jobs program of the Government 
of Ghana (GoG) to embed development efforts into national policy priorities to reach impact at 
scale. It trains five Ph.D. and two post-doctoral candidates and dozens of master’s-level students 
in building the evidence base for its interventions. 
 
FERARI conducts hundreds of fertilizer response trials on maize, rice, and soybean, on-station 
and also with farmers, and demonstrates them to farmer groups in the northern and middle belt of 
Ghana. It conducts surveys among farmers and actors in the value chain to understand the drivers 
for use of fertilizers and other inputs and the marketing of the produce to enhance farm productivity 
and income. It helps the GoG to establish a Ghana National Fertilizer Platform, developing its soil 
mapping expertise toward an information platform.  
 
The content of this report is the sole responsibility of the authors of the involved institutions 
portrayed on the front page. 
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